特此声明:转载自 http://blog.youkuaiyun.com/morgan_xww/article/details/6776947 ,觉得比较好,就转载过来,如有版权问题,我立即删掉。
比赛时看题了,但是没有思路。比赛结束后这题总共通过20+,赛后看这个解题报告,由于博主说得太简洁,而我又是从来没有见过这种dp求数学期望的题,所以研究了好久都木有明白。只有搜索一下【dp求期望】的题目,从简单的开始入手,费了老大功夫,终于搞懂了,于是写下详细解题报告。
如果感觉这个题看不懂,也可以按照我的步骤来看:Poj 2096 --> Zoj 3329 --> Hdu 4035
- /**
- dp求期望的题。
- 题意:
- 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
- 从结点1出发,开始走,在每个结点i都有3种可能:
- 1.被杀死,回到结点1处(概率为ki)
- 2.找到出口,走出迷宫 (概率为ei)
- 3.和该点相连有m条边,随机走一条
- 求:走出迷宫所要走的边数的期望值。
- 设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。
- 叶子结点:
- E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
- = ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei);
- 非叶子结点:(m为与结点相连的边数)
- E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
- = ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei);
- 设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci;
- 对于非叶子结点i,设j为i的孩子结点,则
- ∑(E[child[i]]) = ∑E[j]
- = ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
- = ∑(Aj*E[1] + Bj*E[i] + Cj)
- 带入上面的式子得
- (1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
- 由此可得
- Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
- Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
- Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj);
- 对于叶子结点
- Ai = ki;
- Bi = 1 - ki - ei;
- Ci = 1 - ki - ei;
- 从叶子结点开始,直到算出 A1,B1,C1;
- E[1] = A1*E[1] + B1*0 + C1;
- 所以
- E[1] = C1 / (1 - A1);
- 若 A1趋近于1则无解...
- **/
- #include <cstdio>
- #include <iostream>
- #include <vector>
- #include <cmath>
- using namespace std;
- const int MAXN = 10000 + 5;
- double e[MAXN], k[MAXN];
- double A[MAXN], B[MAXN], C[MAXN];
- vector<int> v[MAXN];
- bool search(int i, int fa)
- {
- if ( v[i].size() == 1 && fa != -1 )
- {
- A[i] = k[i];
- B[i] = 1 - k[i] - e[i];
- C[i] = 1 - k[i] - e[i];
- return true;
- }
- A[i] = k[i];
- B[i] = (1 - k[i] - e[i]) / v[i].size();
- C[i] = 1 - k[i] - e[i];
- double tmp = 0;
- for (int j = 0; j < (int)v[i].size(); j++)
- {
- if ( v[i][j] == fa ) continue;
- if ( !search(v[i][j], i) ) return false;
- A[i] += A[v[i][j]] * B[i];
- C[i] += C[v[i][j]] * B[i];
- tmp += B[v[i][j]] * B[i];
- }
- if ( fabs(tmp - 1) < 1e-10 ) return false;
- A[i] /= 1 - tmp;
- B[i] /= 1 - tmp;
- C[i] /= 1 - tmp;
- return true;
- }
- int main()
- {
- int nc, n, s, t;
- cin >> nc;
- for (int ca = 1; ca <= nc; ca++)
- {
- cin >> n;
- for (int i = 1; i <= n; i++)
- v[i].clear();
- for (int i = 1; i < n; i++)
- {
- cin >> s >> t;
- v[s].push_back(t);
- v[t].push_back(s);
- }
- for (int i = 1; i <= n; i++)
- {
- cin >> k[i] >> e[i];
- k[i] /= 100.0;
- e[i] /= 100.0;
- }
- cout << "Case " << ca << ": ";
- if ( search(1, -1) && fabs(1 - A[1]) > 1e-10 )
- cout << C[1]/(1 - A[1]) << endl;
- else
- cout << "impossible" << endl;
- }
- return 0;
- }