差点以为是秦九韶+矩阵的某种优化
然而这是不可能的= =
我们联想到秦九韶的方法,但是我们不提出来那么多次不就行了!
所以我们考虑二分
如果k为偶数,那么(A+A^2+....A^K) = (A+...+A^K/2)+A^K/2*(A+...+A^K/2)
如果k为奇数,那么(A+A^2+....A^K) = (A+...+A^K/2)+A^K/2*(A+...+A^K/2)+A^k
然后……递归就行= =
然而翻了下Status= =发现非常的慢!大概优化就是改成递推之类的然后就能省去很多计算
或者是换元整理出一个新的矩阵然后直接快速幂
然而窝并不会= =以上就当窝天真单纯的想法
Problem: 3233 User: BPM136
Memory: 1544K Time: 1532MS
Language: G++ Result: Accepted
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#define LL long long
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define down(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
inline LL read()
{
LL d=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
return d*f;
}
#define N 30
int n,m,inf;
struct matrix
{
int a[N][N];
void clear()
{
memset(a,0,sizeof(a));
}
void OUT()
{
fo(i,0,m-1)
{
fo(j,0,m-1)
cout<<a[i][j]<<' ';
cout<<endl;
}cout<<endl;
}
matrix operator*(const matrix b)const
{
matrix anss;
fo(i,0,m-1)
fo(j,0,m-1)
{
anss.a[i][j]=0;
fo(k,0,m-1)
{
anss.a[i][j]+=a[i][k]*b.a[k][j];
anss.a[i][j]%=inf;
}
}
return anss;
}
matrix operator+(const matrix b)const
{
matrix anss;
fo(i,0,m-1)
fo(j,0,m-1)
{
anss.a[i][j]=a[i][j]+b.a[i][j];
anss.a[i][j]%=inf;
}
return anss;
}
};
matrix I;
void getI()
{
fo(i,0,m-1)
fo(j,0,m-1)
if(i==j)
I.a[i][j]=1;
else I.a[i][j]=0;
}
matrix KSM(matrix a,int b)
{
if(b==0)return I;
if(b==1)return a;
matrix ret=KSM(a,b/2);
ret=ret*ret;
if(b%2)ret=ret*a;
return ret;
}
matrix calc(matrix a,int b)
{
if(b==0)return I;
if(b==1)return a;
matrix anss=calc(a,b/2);
matrix ct=KSM(a,b/2);
if(b%2)
{
matrix t=KSM(a,b);
return anss+ct*anss+t;
}else return anss+ct*anss;
}
int main()
{
matrix A,ans;
m=read(),n=read(),inf=read();
getI();
fo(i,0,m-1)
fo(j,0,m-1)
A.a[i][j]=read();
calc(A,n).OUT();
return 0;
}