poj3683 pascal题解

本文介绍了一个关于神父John如何在一年中最繁忙的一天——9月1日为多对新人主持婚礼仪式的问题。每对新人的婚礼都有特定的时间段,并且需要神父在婚礼开始或结束时进行祝福仪式。文章提供了一段程序代码,用于解决如何合理安排神父的时间,确保他能够参加所有婚礼的特殊仪式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Priest John's Busiest Day
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 8237 Accepted: 2801 Special Judge

Description

John is the only priest in his town. September 1st is the John's busiest day in a year because there is an old legend in the town that the couple who get married on that day will be forever blessed by the God of Love. This year N couples plan to get married on the blessed day. The i-th couple plan to hold their wedding from time Si to time Ti. According to the traditions in the town, there must be a special ceremony on which the couple stand before the priest and accept blessings. The i-th couple need Di minutes to finish this ceremony. Moreover, this ceremony must be either at the beginning or the ending of the wedding (i.e. it must be either from Si to Si + Di, or from Ti - Di to Ti). Could you tell John how to arrange his schedule so that he can present at every special ceremonies of the weddings.

Note that John can not be present at two weddings simultaneously.

Input

The first line contains a integer N ( 1 ≤ N ≤ 1000). 
The next N lines contain the SiTi and DiSi and Ti are in the format of hh:mm.

Output

The first line of output contains "YES" or "NO" indicating whether John can be present at every special ceremony. If it is "YES", output another N lines describing the staring time and finishing time of all the ceremonies.

Sample Input

2
08:00 09:00 30
08:15 09:00 20

Sample Output

YES
08:00 08:30
08:40 09:00


var
  a:array [1..3010,0..3010] of longint;
  v,f:array [1..3010] of boolean;
  low,dfn,st,belong,c:Array [1..3010] of longint;
  ff:array [1..3010,1..4] of longint;
  a1,a2,a3,a4,i,j,m,n,x,y,mm,nn,p,ii,s2,len,s1,d,jj,t,k:longint;
  ch:char;
  fff:boolean;
  s:string;


procedure input1;
begin
  readln(m);
  for i:=1 to m do
  begin
    readln(s);
    len:=length(s);
    jj:=0;
    x:=ord(s[1])*10+ord(s[2])-ord('0')*11;
    y:=ord(s[4])*10+ord(s[5])-ord('0')*11;
    mm:=ord(s[7])*10+ord(s[8])-ord('0')*11;
    nn:=ord(s[10])*10+ord(s[11])-ord('0')*11;
    for j:=13 to len do
    jj:=jj*10+ord(s[j])-ord('0');
    s1:=x*60+y;
    s2:=mm*60+nn;
    ff[i,1]:=s1;
    ff[i,2]:=s1+jj;
    ff[i,3]:=s2-jj;
    ff[i,4]:=s2;
  end;
end;


procedure output1;
begin
  for i:=1 to m do
  begin
    if belong[i]>belong[i+m] then
    begin
      a1:=ff[i,1] div 60;
      a2:=ff[i,1] mod 60;
      a3:=ff[i,2] div 60;
      a4:=ff[i,2] mod 60;
      writeln(a1 div 10,a1 mod 10,':',a2 div 10,a2 mod 10,' ',a3 div 10,a3 mod 10,':',a4 div 10,a4 mod 10);
    end else
    begin
      a1:=ff[i,3] div 60;
      a2:=ff[i,3] mod 60;
      a3:=ff[i,4] div 60;
      a4:=ff[i,4] mod 60;
      writeln(a1 div 10,a1 mod 10,':',a2 div 10,a2 mod 10,' ',a3 div 10,a3 mod 10,':',a4 div 10,a4 mod 10);
    end;
  end;
end;


function pp:longint;
begin
  f[st[t]]:=false;
  dec(t);
  exit(st[t+1]);
end;


procedure add(x,y:longint);
begin
  inc(c[x]);
  a[x,c[x]]:=y;
end;


procedure check1;
var
  i:longint;
begin
  for i:=1 to m do
  if belong[i]=belong[m+i] then
  begin
    fff:=false;
    exit;
  end;
end;


function min(x,y:longint):longint;
begin
  if x>y then
  exit(y);
  exit(x);
end;


procedure check(x,y:longint);
begin
  if not ((ff[x,2]<=ff[y,1]) or (ff[x,1]>=ff[y,2])) then
  begin
    add(y+m,x);
    add(x+m,y);
  end;
  if not ((ff[x,4]<=ff[y,3]) or (ff[x,3]>=ff[y,4])) then
  begin
    add(y,x+m);
    add(x,y+m);
  end;
  if not ((ff[x,3]>=ff[y,2]) or (ff[x,4]<=ff[y,1])) then
  begin
    add(x,y);
    add(y+m,m+x);
  end;
  if not ((ff[x,2]<=ff[y,3]) or (ff[x,1]>=ff[y,4])) then
  begin
    add(y,x);
    add(x+m,y+m);
  end;
end;


procedure tarjan(x:longint);
var
  i,y:longint;
begin
  inc(d);
  low[x]:=d;
  dfn[x]:=d;
  inc(t);
  st[t]:=x;
  f[x]:=true;
  for i:=1 to c[x] do
  begin
    if not v[a[x,i]] then
    begin
      v[a[x,i]]:=true;
      tarjan(a[x,i]);
      low[x]:=min
      (low[x],low[a[x,i]]);
    end else
    begin
      if f[a[x,i]] then
      low[x]:=min(low[x],dfn[a[x,i]]);
    end;
  end;
  if dfn[x]=low[x] then
  begin
    inc(p);
    belong[x]:=p;
    y:=x-1;
    while x<>y do
    begin
      y:=pp;
      belong[y]:=p;
    end;
  end;
end;




begin
  input1;
  for i:=1 to m do
    for j:=i+1 to m do
    check(i,j);
  for i:=1 to 2*m do
  if not v[i] then
  begin
    v[i]:=true;
    tarjan(i);
  end;
  fff:=true;
  check1;
  if fff then
  writeln('YES') else
  begin
    writeln('NO');
    halt;
  end;
  output1;
end.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值