POJ 1611 The Suspects

SARS传播模拟
The Suspects
Time Limit: 1000MS Memory Limit: 20000K
Total Submissions: 32952 Accepted: 15977

Description

Severe acute respiratory syndrome (SARS), an atypical pneumonia of unknown aetiology, was recognized as a global threat in mid-March 2003. To minimize transmission to others, the best strategy is to separate the suspects from others. 
In the Not-Spreading-Your-Sickness University (NSYSU), there are many student groups. Students in the same group intercommunicate with each other frequently, and a student may join several groups. To prevent the possible transmissions of SARS, the NSYSU collects the member lists of all student groups, and makes the following rule in their standard operation procedure (SOP). 
Once a member in a group is a suspect, all members in the group are suspects. 
However, they find that it is not easy to identify all the suspects when a student is recognized as a suspect. Your job is to write a program which finds all the suspects.

Input

The input file contains several cases. Each test case begins with two integers n and m in a line, where n is the number of students, and m is the number of groups. You may assume that 0 < n <= 30000 and 0 <= m <= 500. Every student is numbered by a unique integer between 0 and n−1, and initially student 0 is recognized as a suspect in all the cases. This line is followed by m member lists of the groups, one line per group. Each line begins with an integer k by itself representing the number of members in the group. Following the number of members, there are k integers representing the students in this group. All the integers in a line are separated by at least one space. 
A case with n = 0 and m = 0 indicates the end of the input, and need not be processed.

Output

For each case, output the number of suspects in one line.

Sample Input

100 4
2 1 2
5 10 13 11 12 14
2 0 1
2 99 2
200 2
1 5
5 1 2 3 4 5
1 0
0 0

Sample Output

4
1
1

Source

[Submit]   [Go Back]   [Status]   [Discuss]

Home Page   Go Back  To top

比较明显的并查集,不断把小的一方作为源头合并然后遍历祖先为0的计数输出即可

  • Source Code
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    int pre[30000+5];
    int root(int x)
    {
        while(x!=pre[x])
        {
            x=pre[x];
        }
        return x;
    }
    int main()
    {
        int n, m;
        while(~scanf("%d %d", &n, &m))
        {
            if(!n&&!m) break;
            for(int i=0;i<n;i++)
                pre[i]=i;
            while(m--)
            {
                int k, a[30000+5];
                scanf("%d", &k);
                for(int i=1;i<=k;i++)
                    scanf("%d", &a[i]);
                sort(a+1,a+k+1);
                for(int i=2;i<=k;i++)
                {
                    if(root(a[i])<root(a[1]))
                        pre[root(a[1])]=root(a[i]);
                    else pre[root(a[i])]=root(a[1]);
                }
            }
            int ans=0;
            for(int i=0;i<n;i++)
                if(root(i)==0) ans++;
            printf("%d\n", ans);
        }
        return 0;
    }

【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)内容概要:本文围绕“基于深度强化学习的微能源网能量管理与优化策略”展开研究,重点利用深度Q网络(DQN)等深度强化学习算法对微能源网中的能量调度进行建模与优化,旨在应对可再生能源出力波动、负荷变化及运行成本等问题。文中结合Python代码实现,构建了包含光伏、储能、负荷等元素的微能源网模型,通过强化学习智能体动态决策能量分配策略,实现经济性、稳定性和能效的多重优化目标,并可能与其他优化算法进行对比分析以验证有效性。研究属于电力系统与人工智能交叉领域,具有较强的工程应用背景和学术参考价值。; 适合人群:具备一定Python编程基础和机器学习基础知识,从事电力系统、能源互联网、智能优化等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①学习如何将深度强化学习应用于微能源网的能量管理;②掌握DQN等算法在实际能源系统调度中的建模与实现方法;③为相关课题研究或项目开发提供代码参考和技术思路。; 阅读建议:建议读者结合提供的Python代码进行实践操作,理解环境建模、状态空间、动作空间及奖励函数的设计逻辑,同时可扩展学习其他强化学习算法在能源系统中的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值