```
# -*- coding: utf-8 -*-
"""
Created on Sun Jul 7 12:45:39 2019
@author: ZQQ
参考:https://github.com/L1aoXingyu/pytorch-beginner/blob/master/05-Recurrent%20Neural%20Network/recurrent_network.py
"""
import torch
from torch import nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
# torch.manual_seed(1) # reproducible
# Hyper Parameters,定义超参数
num_epoches = 2 # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 64 #批训练的数量
TIME_STEP = 28 # rnn time step / image height 考虑28个时间点,一行信息包括28个像素点,
INPUT_SIZE = 28 # rnn input size / image width 每28步中的一步读取一行信息(一行信息包括28个像素点)
LR = 0.01 # learning rate
DOWNLOAD_MNIST = False # set to True if haven't download the data
# MNIST数据集下载
train_data = dsets.MNIST(root='./mnist/',
train=True, # this is training data
transform=transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to
# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
download=DOWNLOAD_MNIST, # download it if you don't have it
)
test_data = dsets.MNIST(root='./mnist/',
train=False, # 测试集
transform=transforms.ToTensor()
)
# plot其中一张手写数字图片
print(train_data.train_data.size()) # 查看训练集数据大小,60000张28*28的图片 (60000, 28, 28)
print(train_data.train_labels.size()) # 查看训练集标签大小,60000个标签 (60000)
plt.imshow(train_data.train_data[0].numpy(), cmap='gray') # plot 训练集第一张图片
plt.title('%i' % train_data.train_labels[0]) # 图片名称,显示真实标签,%i %d十进制整数,有区别,深入请查阅资料
plt.show() # show
# Data Loader for easy mini-batch return in training
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=BATCH_SIZE, shuffle=True)
# 定义网络模型
class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__()
self.rnn = nn.LSTM(input_size=INPUT_SIZE, # if use nn.RNN(), it hardly learns
hidden_size=64, # rnn 隐藏单元
num_layers=1, # rnn 层数
batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
)
self.out = nn.Linear(64, 10) #10分类
def forward(self, x):
# x shape (batch, time_step, input_size)
# r_out shape (batch, time_step, output_size)
# h_n shape (n_layers, batch, hidden_size)
# h_c shape (n_layers, batch, hidden_size)
r_out, (h_n, h_c) = self.rnn(x, None) # None represents zero initial hidden state
# choose r_out at the last time step
out = self.out(r_out[:, -1, :])
return out
rnn = RNN() # 调用模型
print(rnn) # 查看模型结构
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # 选择优化器,optimize all cnn parameters
loss_func = nn.CrossEntropyLoss() # 定义损失函数,the target label is not one-hotted
train_acces = []
train_losses = []
eval_acces = []
eval_losses = []
# 训练,测试。training and testing
for epoch in range(num_epoches):
print('epoch {}'.format(epoch + 1))
print('*' * 10)
train_loss = 0.0
train_acc = 0.0
#print(len(train_loader)) # num_iterations = len(train_loader):一次epoch经过num_iterations次迭代,就是下面的step:938,跟batch_size有关
for step, (imgs, labels) in enumerate(train_loader): # gives batch data
#print(step) # 1,2,3,4,5,...,
#print(b_x) # 图片向量
#print(b_y) # 图片对应的标签
#print(len(b_x)) # 每次迭代数据量大小
imgs = imgs.view(-1, 28, 28) # reshape x to (batch, time_step, input_size)
# 前向传播
output = rnn(imgs) # rnn output
loss = loss_func(output, labels) # cross entropy loss
train_loss += loss.data.numpy() # loss张量转为numpy标量
#print(train_loss)
pred_y = torch.max(output,1)[1].data.numpy()
labels = labels.numpy() # covert to numpy array
num_correct = (pred_y == labels).sum()
train_acc += num_correct / len(labels) # 每批次数据的accuracy
#print(train_acc)
# 后向传播
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
# print('[%d/%d epoch]:'%(epoch,num_epoches),
# '[%d/%d iter]:' % (step+1,len(train_loader))) # 从step+1开始
# 完成一次epoch,记录平均值
train_losses.append(train_loss / len(train_loader))
train_acces.append(train_acc / len(train_loader))
print('[%d/%d]'%(epoch+1,num_epoches),
'train loss:%.4f' % (train_loss / len(train_loader)),
'train acc:%.4f' % (train_acc / len(train_loader))
)
rnn.eval()
eval_loss = 0.0
eval_acc = 0.0
for test_step,(test_imgs, test_labels) in enumerate(test_loader):
test_imgs = test_imgs.view(-1,28,28)
test_output = rnn(test_imgs)
test_loss = loss_func(test_output,test_labels)
eval_loss += test_loss.data.numpy() # test_loss张量转为numpy标量
test_pred_y = torch.max(test_output, 1)[1].data.numpy()
test_labels = test_labels.numpy() # covert to numpy array
# #test_acc = float((test_pred_y == test_labels).astype(int).sum()) / float(test_labels.size)
test_num_correct = (test_pred_y == test_labels).sum()
eval_acc += test_num_correct / len(test_labels)
# 完成一次epoch,记录平均值
eval_losses.append(eval_loss / len(test_loader))
eval_acces.append(eval_acc / len(test_loader))
print('[%d/%d]'%(epoch+1,num_epoches),
'test loss:%.4f' % (eval_loss / len(test_loader)),
'test acc:%.4f' % (eval_acc / len(test_loader))
)
# 保存模型
torch.save(rnn.state_dict(), 'Result/model_save/rnn.pth')
```
Pytorch中文官网
https://www.pytorchtutorial.com/10-minute-pytorch-6/