C++ AMP: C++ Accelerated Massive Parallelism

C++AMP是一项由Visual C++团队开发的技术,旨在降低异构硬件编程门槛的同时保持高性能,无需牺牲开发效率或解决方案的可移植性。它适用于当前及未来的并行硬件,并通过现代C++实现。该技术作为Visual C++的一部分,无需使用额外编译器或学习新的语法。C++AMP还提供了一个类似STL的库,使得处理大型多维数据变得简单。

At AMD's Fusion conference Herb Sutter announced in his keynote session a technology that our team has been working on that we call C++ Accelerated Massive Parallelism (C++ AMP) and during the keynote I showed a brief demo of an app built with our technology. After the keynote, I go deeper into the technology in my breakout session. If you read both those abstracts, you'll get some information about what C++ AMP is, without being too explicit since we published the abstracts before the technology was announced.

You can find the official online announcement at Soma's blog post.

Here, I just wanted to capture the key points about C++ AMP that can serve as an introduction and an FAQ. So, in no particular order…

C++ AMP

  1. lowers the barrier to entry for heterogeneous hardware programmability and brings performance to the mainstream, without sacrificing developer productivity or solution portability.
  2. is designed not only to help you address today's massively parallel hardware (i.e. GPUs and APUs), but it also future proofs your code investments with a forward looking design.
  3. is part of Visual C++. You don't need to use a different compiler or learn different syntax.
  4. is modern C++. Not C or some other derivative.
  5. is integrated and supported fully in Visual Studio 11. Editing, building, debugging, profiling and all the other goodness of Visual Studio work well with C++ AMP.
  6. provides an STL-like library as part of the existing concurrency namespace and delivered in the new amp.h header file.
  7. makes it extremely easy to work with large multi-dimensional data on heterogeneous hardware; in a manner that exposes parallelization.
  8. introduces only one core C++ language extension.
  9. builds on DirectX (and DirectCompute in particular) which offers a great hardware abstraction layer that is ubiquitous and reliable. The architecture is such, that this point can be thought of as an implementation detail that does not surface to the API layer.

Stay tuned on my blog for more over the coming months where I will switch from just talking about C++ AMP to showing you how to use the API with code examples…

 

http://www.danielmoth.com/Blog/C-Accelerated-Massive-Parallelism.aspx

内容概要:本文为《科技类企业品牌传播白皮书》,系统阐述了新闻媒体发稿、自媒体博主种草与短视频矩阵覆盖三大核心传播策略,并结合“传声港”平台的AI工具与资源整合能力,提出适配科技企业的品牌传播解决方案。文章深入分析科技企业传播的特殊性,包括受众圈层化、技术复杂性与传播通俗性的矛盾、产品生命周期影响及2024-2025年传播新趋势,强调从“技术输出”向“价值引领”的战略升级。针对三种传播方式,分别从适用场景、操作流程、效果评估、成本效益、风险防控等方面提供详尽指南,并通过平台AI能力实现资源智能匹配、内容精准投放与全链路效果追踪,最终构建“信任—种草—曝光”三位一体的传播闭环。; 适合人群:科技类企业品牌与市场负责人、公关传播从业者、数字营销管理者及初创科技公司创始人;具备一定品牌传播基础,关注效果可量化与AI工具赋能的专业人士。; 使用场景及目标:①制定科技产品全生命周期的品牌传播策略;②优化媒体发稿、KOL合作与短视频运营的资源配置与ROI;③借助AI平台实现传播内容的精准触达、效果监测与风险控制;④提升品牌在技术可信度、用户信任与市场影响力方面的综合竞争力。; 阅读建议:建议结合传声港平台的实际工具模块(如AI选媒、达人匹配、数据驾驶舱)进行对照阅读,重点关注各阶段的标准化流程与数据指标基准,将理论策略与平台实操深度融合,推动品牌传播从经验驱动转向数据与工具双驱动。
【3D应力敏感度分析拓扑优化】【基于p-范数全局应力衡量的3D敏感度分析】基于伴随方法的有限元分析和p-范数应力敏感度分析(Matlab代码实现)内容概要:本文档围绕“基于p-范数全局应力衡量的3D应力敏感度分析”展开,介绍了一种结合伴随方法与有限元分析的拓扑优化技术,重点实现了3D结构在应力约束下的敏感度分析。文中详细阐述了p-范数应力聚合方法的理论基础及其在避免局部应力过高的优势,并通过Matlab代码实现完整的数值仿真流程,涵盖有限元建模、灵敏度计算、优化迭代等关键环节,适用于复杂三维结构的轻量化与高强度设计。; 适合人群:具备有限元分析基础、拓扑优化背景及Matlab编程能力的研究生、科研人员或从事结构设计的工程技术人员,尤其适合致力于力学仿真与优化算法开发的专业人士; 使用场景及目标:①应用于航空航天、机械制造、土木工程等领域中对结构强度和重量有高要求的设计优化;②帮助读者深入理解伴随法在应力约束优化中的应用,掌握p-范数法处理全局应力约束的技术细节;③为科研复现、论文写作及工程项目提供可运行的Matlab代码参考与算法验证平台; 阅读建议:建议读者结合文中提到的优化算法原理与Matlab代码同步调试,重点关注敏感度推导与有限元实现的衔接部分,同时推荐使用提供的网盘资源获取完整代码与测试案例,以提升学习效率与实践效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值