- 大家好,我是同学小张,日常分享AI知识和实战案例
- 欢迎 点赞 + 关注 👏,持续学习,持续干货输出。
- +v: jasper_8017 一起交流💬,一起进步💪。
- 微信公众号也可搜【同学小张】 🙏
本站文章一览:

这两天在看大模型长时记忆的一些实现方法,然后看到了这样一个开源项目:MemGPT,又称 Memory GPT,专门用来管理大模型的记忆。这可能是目前管理大模型记忆的最专业的框架和思路了。
GitHub:https://github.com/cpacker/MemGPT
- Building persistent LLM agents with long-term memory
今天我们来看下 MemGPT 背后的实现原理,看看大佬是怎么实现大模型记忆管理和长时记忆的。并上手体验一下。
文章目录
- 0. 实现原理
-
- 0.1 记忆分层
- 0.2 数据移动
- 1. 快速上手
-
- 1.1 普通玩法
-
- 1.1.1 环境安装
- 1.2 进阶玩法
-
- 1.2.1 源码安装
- 1.2.2 上手代码
- 1.2.3 运行效果
0. 实现原理
从论文的题目:MemGPT: Towards LLMs as Operating Systems,就可以看出大体的实现思路,它借鉴传统操作系统虚拟内存管理的方式,通过对记忆分层,智能管理不同存储层,在LLM的有限上下文窗口内提供扩展的上下文。在文档分析和多会话聊天两个领域中,MemGPT克服了现代LLM的上下文窗口限制,提高了性能。
0.1 记忆分层
MemGPT受操作系统启发,实现了一个多级存储架构。在这个架构中,有两种主要的内存类型:主上下文(类似于主内存/物理内存/RAM)和外部上下文(类似于磁盘内存/磁盘存储)。
- 主上下文 (Main Context): 就是大模型中固定的上下文窗口,这部分包含LLM的提示词。是大模型接收到的内容。
- 外部上下文 (External Context): 这是指保存在LLM的固定上下文窗口之外的任何信息。这部分信息如果需要在推理过程中被LLM使用,就必须显式地移动到主上下文中。大模型无法直接用,要想用,必须通过查找等将必
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



