理论部分:
代码实现部分
一、训练集与测试集的划分
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=666)
二、分类结果的评价
1.精度
from sklearn.metrics import accuracy_score
accuracy_score(y_test_binarized,predictions_binarized)
2.查准率/精准率
from sklearn.metrics import precision_score
precision_score(y_test_binarized,predictions_binarized)
3.查全率/召回率
from sklearn.metrics import recall_score
recall_score(y_test_binarized,predictions_binarized)
4.F1度量
from sklearn.metrics import f1_score
f1_score(y_test_binarized,predictions_binarized)
5.MCC马修斯相关系数
from sklearn.metrics import matthews_corrcoef
matthews_corrcoef(y_test_binarized,predictions_binarized)
注:一个函数共同生成精准率/召回率/F1得分
from sklearn.metrics import classification_report
classification_report(y_test_binarized,predictions_binarized)
6.平均绝对误差
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test,predictions)
7.均方误差
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test,predictions)
8.R得分
from sklearn.metrics import r2_error
r2_error(y_test,predictions)