理论部分:
代码部分:
from myAlgorithm.SimpleLinearRegression import SimpleLinearRegression
x = np.array([1.,2.,3.,4.,5.])
y = np.array([1.,3.,2.,3.,5,])
x_predict = np.array([6])
reg = SimpleLinearRegression()
reg.fit(x,y)
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
boston = datasets.load_boston()
X = boston.data
y = boston.target
X = X[y<50.0]
y = y[y<50.0]
X.shape
输出:(490, 13)
y.shape
输出:(490, )
from myAlgorithm.model_selection import train_test_split
from myAlgorithm.LinearRegression import LinearRegression
X_train, X_test, y_train, y_test = train_test_split(X, y, seed = 666)
reg = LinearRegression()
reg.fit_n