Spark 优化之:Shuffle优化

本文聚焦于Spark Shuffle的调优,包括调整map和reduce端缓冲区大小以减少磁盘IO,设置reduce端重试次数和等待时间间隔以增强稳定性,以及探讨bypass机制的开启阈值以优化性能。通过这些策略,可以显著提升Spark任务的执行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Shuffle调优

1. map和reduce端缓冲区大小

在Spark任务运行过程中,如果shuffle的map端处理的数据量比较大,但是map端缓冲的大小是固定的,可能会出现map端缓冲数据频繁spill溢写到磁盘文件中的情况,使得性能非常低下,通过调节map端缓冲的大小,可以避免频繁的磁盘IO操作,进而提升Spark任务的整体性能。

map端缓冲的默认配置是32KB,如果每个task处理640KB的数据,那么会发生640/32 = 20次溢写,如果每个task处理64000KB的数据,即会发生64000/32=2000次溢写,这对于性能的影响是非常严重的。

map端缓冲的配置方法:

val conf = new SparkConf()
  .set("spark.shuffle.file.buffer", "64")

Spark Shuffle过程中,shuffle reduce task的buffer缓冲区大小决定了reduce task每次能够缓冲的数据量,也就是每次能够拉取的数据量,如果内存资源较为充足,适当增加拉取数据缓冲区的大小,可以减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。

reduce端数据拉取缓冲区的大小可以通过spark.reducer.maxSizeInFlight参数进行设置,默认为48MB。该参数的设置方法如下:

reduce端数据拉取缓冲区配置:

val conf = new SparkConf()
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值