Python30 使用Gensim库实现Word2Vec对文本进行处理

图片

1.Word2Vec

Word2Vec 是一种将词语表示为向量的技术,能够捕捉词语之间的语义关系。它由 Google 的 Tomas Mikolov 等人在 2013 年提出,广泛应用于自然语言处理任务中。其核心概念主要包括:

词嵌入(Word Embeddings)

词嵌入是将词语映射到一个固定大小的向量空间中,使得在语义上相似的词在向量空间中也相互接近。Word2Vec 通过神经网络模型生成词嵌入。

模型架构

图片

Word2Vec 主要有两种模型架构:

  • CBOW(Continuous Bag of Words):给定一个词的上下文,预测中心词。例如,给定上下文 ["The", "cat", "on", "the", "mat"],目标词是 "sat"。

  • Skip-gram:给定一个词,预测其上下文。例如,目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值