66、多线程、并行和异步编程指南

多线程、并行和异步编程指南

在软件开发中,多线程、并行和异步编程十分重要,它们能提升程序性能和响应速度。下面将详细介绍相关的编程技术和方法。

1. 使用 [Synchronization] 属性进行同步

[Synchronization] 属性是 System.Runtime.Remoting.Contexts 命名空间的成员,它能让对象的所有实例成员代码实现线程安全。当 CLR 分配带有 [Synchronization] 属性的对象时,会将其置于同步上下文中。要让 Printer 类线程安全,可按如下方式更新定义:

using System.Runtime.Remoting.Contexts;
// All methods of Printer are now thread safe!
[Synchronization]
public class Printer : ContextBoundObject
{
    public void PrintNumbers()
    {
        ...
    }
}

这种方法虽简单,但即使方法未使用线程敏感数据,CLR 仍会锁定对该方法的调用,可能降低类型的整体功能,使用时需谨慎。

2. 定时器回调编程

许多应用需要定期调用特定方法,可使用 System.Threading.Timer 类型和 TimerCallback 委托。以下是

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方的例子。 简单的平方问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值