function [X,Number_of_iteration] = SOR_iteration(A,B,P,delta,max1,W)
% Input - A is an N x N nonsingular matrix
% - B is an N x 1 matrix
% - P is an N x 1 matrix: the initial guess
% - delta is the tolerance for P
% - max1 is the maximum number of iterations
% - W is the relax factor
% Output - X is an N x 1 matrix: the SOR approximation to the
% - solution of the AX = B
N = length(B);
count = 0;
for k = 1 : max1
for j = 1 : N
if j == 1
X(1) = (1 - W) * P(1) - (B(1) - (A(1,(2:N)) * P(2:N))) / (A(1,1) / W);
elseif j == N
X(N) = (1 - W) * P(N) - (B(N) - (A(N,(1:N-1)) * X(1:N-1)')) / (A(N,N) / W);
else
%X contains the kth approxiamation and P the (k-1)st
X(j) = (1 - W) * P(j) - (B(j) - A (j,1:j-1) * X(1,j-1)' - A(j,(j+1:N)) * P(j+1 : N)) / (A(j,j) / W);
end
end
count = count + 1;
err = abs(norm(X'-P));
reletive_err = err/(norm(X)+eps);
P = X';
if(err < delta) || (reletive_err < delta)
break
end
end
X = X';
Number_of_iteration = count;