线段树-模板-区间查询-区间修改

文章介绍了如何使用线段树数据结构解决一个关于数列的操作问题,包括区间内每个数乘以某个因子、加上某个值,以及查询区间和并对模数取余的操作。作者给出了C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【模板】线段树 2

传送门:https://www.luogu.com.cn/problem/P3373
题单:https://www.luogu.com.cn/training/16376#problems

题目描述

如题,已知一个数列,你需要进行下面三种操作:

  • 将某区间每一个数乘上 xxx
  • 将某区间每一个数加上 xxx
  • 求出某区间每一个数的和。

输入格式

第一行包含三个整数 n,q,mn,q,mn,q,m,分别表示该数列数字的个数、操作的总个数和模数。

第二行包含 nnn 个用空格分隔的整数,其中第 iii 个数字表示数列第 iii 项的初始值。

接下来 qqq 行每行包含若干个整数,表示一个操作,具体如下:

操作 111: 格式:1 x y k 含义:将区间 [x,y][x,y][x,y] 内每个数乘上 kkk

操作 222: 格式:2 x y k 含义:将区间 [x,y][x,y][x,y] 内每个数加上 kkk

操作 333: 格式:3 x y 含义:输出区间 [x,y][x,y][x,y] 内每个数的和对 mmm 取模所得的结果

输出格式

输出包含若干行整数,即为所有操作 333 的结果。

样例 #1

样例输入 #1

5 5 38
1 5 4 2 3
2 1 4 1
3 2 5
1 2 4 2
2 3 5 5
3 1 4

样例输出 #1

17
2

提示

【数据范围】

对于 30%30\%30% 的数据:n≤8n \le 8n8q≤10q \le 10q10
对于 70%70\%70% 的数据:$n \le 10^3 ,,q \le 10^4$。
对于 100%100\%100% 的数据:1≤n≤1051 \le n \le 10^51n1051≤q≤1051 \le q \le 10^51q105

除样例外,m=571373m = 571373m=571373

(数据已经过加强 _

样例说明:

故输出应为 17171722240 mod 38=240 \bmod 38 = 240mod38=2)。

代码

#include <bits/stdc++.h>

#define MAXN 100010
#define ll long long

using namespace std;

int n, m, mod;
int a[MAXN];

struct Segment_Tree {
	ll sum, add, mul;
	int l, r;
}s[MAXN * 4];

void update(int pos) {
	s[pos].sum = (s[pos << 1].sum + s[pos << 1 | 1].sum) % mod;
    return;
}

void pushdown(int pos) { //pushdown的维护
	s[pos << 1].sum = (s[pos << 1].sum * s[pos].mul + s[pos].add * (s[pos << 1].r - s[pos << 1].l + 1)) % mod;
	s[pos << 1 | 1].sum = (s[pos << 1 | 1].sum * s[pos].mul + s[pos].add * (s[pos << 1 | 1].r - s[pos << 1 | 1].l + 1)) % mod;
	
	s[pos << 1].mul = (s[pos << 1].mul * s[pos].mul) % mod;
	s[pos << 1 | 1].mul = (s[pos << 1 | 1].mul * s[pos].mul) % mod;
	
	s[pos << 1].add = (s[pos << 1].add * s[pos].mul + s[pos].add) % mod;
	s[pos << 1 | 1].add = (s[pos << 1 | 1].add * s[pos].mul + s[pos].add) % mod;
		
	s[pos].add = 0;
	s[pos].mul = 1;
	return; 
}void build_tree(int pos, int l, int r) { //建树
	s[pos].l = l;
	s[pos].r = r;
	s[pos].mul = 1;
	
	if (l == r) {
		s[pos].sum = a[l] % mod;
		return;
	}
	
	int mid = (l + r) >> 1;
	build_tree(pos << 1, l, mid);
	build_tree(pos << 1 | 1, mid + 1, r);
	update(pos);
	return;
}

void ChangeMul(int pos, int x, int y, int k) { //区间乘法
	if (x <= s[pos].l && s[pos].r <= y) {
		s[pos].add = (s[pos].add * k) % mod;
		s[pos].mul = (s[pos].mul * k) % mod;
		s[pos].sum = (s[pos].sum * k) % mod;
		return;
	}
	
	pushdown(pos);
	int mid = (s[pos].l + s[pos].r) >> 1;
	if (x <= mid) ChangeMul(pos << 1, x, y, k);
	if (y > mid) ChangeMul(pos << 1 | 1, x, y, k);
	update(pos);
	return;
}void ChangeAdd(int pos, int x, int y, int k) { //区间加法
	if (x <= s[pos].l && s[pos].r <= y) {
		s[pos].add = (s[pos].add + k) % mod;
		s[pos].sum = (s[pos].sum + k * (s[pos].r - s[pos].l + 1)) % mod;
		return;
	}
	
	pushdown(pos);
	int mid = (s[pos].l + s[pos].r) >> 1;
	if (x <= mid) ChangeAdd(pos << 1, x, y, k);
	if (y > mid) ChangeAdd(pos << 1 | 1, x, y, k);
	update(pos);
	return;
}

ll AskRange(int pos, int x, int y) { //区间询问
	if (x <= s[pos].l && s[pos].r <= y) {
		return s[pos].sum;
	}
	
	pushdown(pos);
	ll val = 0;
	int mid = (s[pos].l + s[pos].r) >> 1;
	if (x <= mid) val = (val + AskRange(pos << 1, x, y)) % mod;
	if (y > mid) val = (val + AskRange(pos << 1 | 1, x, y)) % mod;
	return val;
}

int main() {
	scanf("%d%d%d", &n, &m, &mod);
	
	for (int i = 1; i <= n; i++) {
		scanf("%d", &a[i]);
	}
	
	build_tree(1, 1, n);
	
	for (int i = 1; i <= m; i++) {
		int opt, x, y;
		scanf("%d%d%d", &opt, &x, &y);
		if (opt == 1) {
			int k;
			scanf("%d", &k);
			ChangeMul(1, x, y, k);
		}
		if (opt == 2) {
			int k;
			scanf("%d", &k);
			ChangeAdd(1, x, y, k);
		}
		if (opt == 3) {
			printf("%lld\n", AskRange(1, x, y));
		}
	}
    
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值