Wormholes

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2.. M+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: a bidirectional path between S and E that requiresT seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2.. MW+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

题意:每组测试数据第一行表示农场里N块地,M条路连接两块地,W个虫洞,然后接下来M行的每行是三个数S,E,T代表:S和E之间的双向路径,需要T秒才能穿过,接下来W行,每行三个数S,E,Ts,表示从S到E的·单向路径,可让旅行者返回Ts秒虫洞使条单向路,会在你进入虫洞之前把你传送到目的地,就是当你过去的时候时间会倒退Ts。求会不会在最初离开之前的某个时间之前回到起点。

思路:这个题就是问我们是否有负权回路。在输遇到虫洞的三个数时把时间输成负数就行了,然后用SPFA算法。代码如下:


#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
#define maxx 100000
#define inf 0x3f3f3f3f
using namespace std;
struct node
{
    int to;
    int next;
    int w;
} e[maxx];
int flag;
int dis[maxx];
int head[maxx],cn[maxx],sum[maxx],vis[maxx];
int cnt,m,n;
void add(int x,int y,int d)
{
    e[cnt].to=y;
    e[cnt].w=d;
    e[cnt].next=head[x];
    head[x]=cnt++;
}
void spfa()
{
    queue<int>q;
    q.push(1);
    dis[1]=0;
    vis[1]=1;
    while(!q.empty())
    {
        int u=q.front();
        vis[u]=0;
        q.pop();
        for(int i=head[u]; i!=-1; i=e[i].next)
        {
            int v=e[i].to;
            if(dis[v]>dis[u]+e[i].w)
            {
                dis[v]=dis[u]+e[i].w;
                if(!vis[v])
                {
                    sum[v]++;
                    vis[v]=1;
                    q.push(v);
                    if(sum[v]>=n)
                    {
                        flag=1;
                        break;
                    }
                }
            }
        }
        if(flag)
            break;
    }
}
int main()
{
    int T,c;
   scanf("%d",&T);
    while(T--)
    {
        memset(dis,inf,sizeof(dis));
        memset(head,-1,sizeof(head));
        memset(cn,0,sizeof(cn));
        memset(sum,0,sizeof(sum));
        memset(vis,0,sizeof(vis));
        cnt=0;
        flag=0;
        scanf("%d%d%d",&n,&m,&c);
        int x,y,z;
        for(int i=0; i<m; i++)
        {
            scanf("%d%d%d",&x,&y,&z);
            add(x,y,z);
            add(y,x,z);
        }
        for(int i=0; i<c; i++)
        {
            scanf("%d%d%d",&x,&y,&z);
            add(x,y,-z);
        }
        spfa();
        if(flag)
            printf("YES\n");
        else
            printf("NO\n");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值