How many ways

本文介绍了一个简单的生存游戏问题,玩家需要控制机器人在一个棋盘上从起点走到终点,只能向右或向下移动,每走一步消耗一单位能量。文章提供了一个使用记忆化搜索算法求解从起点到终点的不同路径数量的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下: 
1.机器人一开始在棋盘的起始点并有起始点所标有的能量。 
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。 
3.机器人不能在原地停留。 
4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。 


如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4) 

点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。 
我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。

Input

第一行输入一个整数T,表示数据的组数。 
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。

Outpu

对于每一组数据输出方式总数对10000取模的结果.

Sample Input

1
6 6
4 5 6 6 4 3
2 2 3 1 7 2
1 1 4 6 2 7
5 8 4 3 9 5
7 6 6 2 1 5
3 1 1 3 7 2

Sample Output

3948

题意:这是一个矩阵题,矩阵上每个点上的数代表从这一步开始最多能走的步数,每次只能往右,往下走。问从左上角到右下角有多少种方法。

思路:这道题用记忆化搜索,因为每次走的时候,不一定要把步数用完,所以能走的是一个范围,现用两层for循环得出这个范围内每个可走的点,从左上角开始进行记忆化搜索。把每个点能到达右下角的方法数给记录下来,下次再到达这个点的时候就可以直接应用的这个数了,需要注意的是。book数组中存的是 方法数取余的结果(大于等于0),因此刚开始标记为-1,不能标记为0,如果没有返回即这个点之前没走过的话,再把它初始化为0.代码如下:

#include<stdio.h>
#include<string.h>
int n,m,a[110][110],book[110][110];
int angel(int x,int y)
{
    if(book[x][y]>=0)    //book 中是取余的结构,如果走过必然大于等于0
        return book[x][y];  //剪枝
    book[x][y]=0;          //这个点没有走过,初始化为 0
    for(int i=0; i<=a[x][y]; i++)   //两层for循环是计算 横纵坐标
    {
        for(int j=0; j<=a[x][y]-i; j++)
        {
            int tx=x+i;        //横坐标
            int ty=y+j;        //纵坐标
            if(tx<1||tx>n||ty<1||ty>m)
                continue;
            int t=angel(tx,ty);
            book[x][y]=(book[x][y]+t)%10000; //book中是取余的结果
        }
    }
    return book[x][y];
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(book,-1,sizeof(book));
        scanf("%d%d",&n,&m);
        for(int i=1; i<=n; i++)
            for(int j=1; j<=m; j++)
                scanf("%d",&a[i][j]);
        book[n][m]=1;//将终点标记为1 代表没到一次终点,方法数加1
        angel(1,1);
        printf("%d\n",book[1][1]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值