假设,只求一对pair(A,B),就是一道简单的树状数组水题。只需要求出每个位置它右边有多少比它大的数,求一个前缀和就是答案。
但两对其实也一样,各求出两对的前缀和,相乘,然后再把a==c,a==d,b==c,b==d的不符情况减去。
先用树状数组预处理出以下四个数组:
lg[i],左边比a[i]大的;
ls[i],左边比a[i]小的;
rg[i],右边比a[i]大的;
rs[i],右边比a[i]小的;
怎么求不合要求的情况,可以这样考虑
假设a==c,A[b]在a的右边且A[b]>A[a],即rg[a],A[d]也在c的右边且A[d]<A[c],即rs[c];所以a==c的情况就是 rs[i]*rg[i];
其它类似。
【注意】a[i]的值可达1e9,所以要离散化,离散化的时候注意有重复的数字。
附上两份代码,另一份差不多是标程改过来的,其中树状数组的写法我搞不懂,问了某巨之后说是那样写树状数组的下标就可以从0开始了。
【代码1】
/* ***********************************************
Author :angon
************************************************ */
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define mst(a,k) memset(a,k,sizeof(a))
#define REP(i,k,n) for(int i=k;i<n;i++)
#define REPP(i,k,n) for(int i=k;i<=n;i++)
#define scan(d) scanf("%d",&d)
#define scanl(d) scanf("%I64d",&d)
#define scann(n,m) scanf("%d%d",&n,&m)
#define scannl(n,m) scanf("%i64d%I64d",&n,&m)
#define mst(a,k) memset(a,k,sizeof(a))
#define LL long long
#define N 50010
#define mod 1000000007
inline int read(){int s=0;char ch=getchar();for(; ch<'0'||ch>'9'; ch=getchar());for(; ch>='0'&&ch<='9'; ch=getchar())s=s*10+ch-'0';return s;}
LL a[N],b[N],ls[N],lg[N],rs[N],rg[N];
int n,m;
int c[N];
int lowbit(int x)
{
return x & (-x);
}
void modify (int x,int add) { //在x位置加上add,要修改所有祖先
while(x<=m)
{
c[x]+=add;
x+=lowbit(x);
}
}
LL get_sum(int x) //统计前x项的和
{
int ret=0;
while(x>0)
{
ret+=c[x];
x-=lowbit(x);
}
return ret;
}
int main()
{
//freopen("1012.in","r",stdin);
//freopen("out.txt","w",stdout);
while(~scan(n))
{
REPP(i,1,n) scanl(a[i]),b[i]=a[i];
sort(b+1,b+n+1);
m = unique(b+1,b+n+1)-(b+1);
REPP(i,1,n) a[i] = lower_bound(b+1,b+m+1,a[i])-b;
LL sum1=0,sum2=0;
mst(c,0);
REPP(i,1,n)
{
ls[i] = get_sum(a[i]-1);
lg[i] = get_sum(m) - get_sum(a[i]);
// lg[i] = i - get_sum(a[i]);
sum1+=ls[i];
sum2+=lg[i];
modify(a[i],1);
}
mst(c,0);
for(int i=n;i>=1;i--)
{
rs[i] = get_sum(a[i]-1);
//rg[i] = n - i - get_sum(a[i]) +1;
rg[i] = get_sum(m) - get_sum(a[i]);
modify(a[i],1);
}
LL ans = sum1*sum2;
REPP(i,1,n)
{
ans -= rg[i]*rs[i];
ans -= rg[i]*lg[i];
ans -= ls[i]*rs[i];
ans -= ls[i]*lg[i];
}
printf("%I64d\n",ans);
}
return 0;
}
【代码2】
#include <bits/stdc++.h>
#define LL long long
#define ALL(v) (v).begin(),(v).end()
#define showtime fprintf(stderr,"time = %.15f\n",clock() / (double)CLOCKS_PER_SEC)
const int N = 100000 + 5;
int n,A[N],B[N],C[N];
int ls[N],rs[N],lg[N],rg[N];
int tot;
void modify(int p,int dt) { //树状数组下标从0开始
for (int i = p; i < tot; i += ~i & i + 1) C[i] += dt;
}
int query(int p) {
int ret = 0;
for (int i = p; i >= 0; i -= ~i & i + 1) ret += C[i];
return ret;
}
int main() {
//freopen("1012.in","r",stdin);
//freopen("out.txt","w",stdout);
while (scanf("%d",&n) == 1) {
for (int i = 0; i < n; ++ i) {
scanf("%d",A + i);
B[i]=A[i];
}
sort(B,B+n);
tot = unique(B,B+n)-B;
for (int i = 0; i < n; ++ i) {
A[i] = lower_bound(B,B+tot,A[i]) - B ;
}
mst(C,0);
for (int i = 0; i < n; ++ i) {
ls[i] = query(A[i] - 1);
lg[i] = i - query(A[i]);
modify(A[i],1);
}
mst(C,0);
for (int i = n - 1; i >= 0; -- i) {
rs[i] = query(A[i] - 1);
rg[i] = n - 1 - i - query(A[i]);
modify(A[i],1);
}
LL result = 0,allg = accumulate(rs,rs + n,0ll);
for (int i = 0; i < n; ++ i) {
result += rg[i] * 1ll * (allg - lg[i] - rs[i]) - (lg[i] + rs[i]) * 1ll * ls[i];
}
printf("%I64d\n",result);
}
return 0;
}