一、Transformer 架构
该架构是在谷歌于 2017年发表的论文“Attention Is All You Need”中首次提出的。Transformer 最初是为机器翻译任务(比如将英文翻译成德语和法语)开发的。
Transformer 架构由两个子模块构成:编码器和解码器。编码器(encoder)模块负责处理输入文本,将其编码为一系列数值表示或向量,以捕捉输入的上下文信息。然后,解码器(decoder)模块接收这些编码向量,并据此生成输出文本。以翻译任务为例,编码器将源语言的文本编码成向量,解码器则解码这些向量以生成目标语言的文本。编码器和解码器都是由多层组成,这些层通过自注意力机制连接。
Transformer 和大语言模型的一大关键组件是自注意力机制(self-attention mechanism),它允许模型衡量序列中不同单词或词元之间的相对重要性。这一机制使得模型能够捕捉到输入数据中长距离的依赖和上下文关系,从而提升其生成连贯且上下文相关的输出的能力。
并非所有的 Transformer 都是大语言模型,因为Transformer 也可用于计算机视觉领域。同样,并非所有的大语言模型都基于 Transformer 架构,因为还存在基于循环和卷积架构的大语言模型。
二、GPT 与 Bert
与原始 Transformer 架构相比,GPT的通用架构更为简洁。
它只包含解码器部分,并不包含编码器。由于像 GPT 这样的解码器模型是通过逐词预测生成文本,因此它们被认为是一种自回归模型(autoregressive model)。自回归模型将之前的输出作为未来预测的输入。GPT-3 总共有 96 层 Transformer 和 1750 亿个参数虽然原始的 Transformer 模型(包含编码器模块和解码器模块)专门为语言翻译而设计,但 GPT 模型采用了更大且更简单的纯解码器架构,旨在预测下一个词,并且它们也能执行翻译任务。模型能够完成未经明确训练的任务的能力称为涌现(emergence)。这种能力并非模型在训练期间被明确教授所得,而是其广泛接触大量多语言数据和各种上下文的自然结果。
GPT 则侧重于原始 Transformer 架构的解码器部分,主要用于处理生成文本的任务,包括机器翻译、文本摘要、小说写作、代码编写等。零样本学习(zero-shot learning)是指在没有任何特定示例的情况下,泛化到从未见过的任务,而少样本学习(few-shot learning)是指从用户提供的少量示例中进行学习。
BERT 基于原始 Transformer的编码器模块构建,其训练方法与GPT 不同。GPT 主要用于生成任务,而 BERT 及其变体专注于掩码预测(masked word prediction),即预测给定句子中被掩码的词。
总而言之: GPT 是 Transformer的解码器部分,Bert 是 Transformer 的编码器部分。
三、Token
词元(token)是模型读取文本的基本单位。数据集中的词元数量大致等同于文本中的单词和标点符号的数量。
分词,即将文本转换为词元的过程。
预训练 GPT-3的云计算费用成本估计高达 460 万美元。该模型仅在 3000 亿个词元上进行了训练。好消息是,许多预训练的大语言模型是开源模型,可以作为通用工具,用于写作、摘要和编辑那些未包含在训练数据中的文本。
同时,这些大语言模型可以使用相对较小的数据集对特定任务进行微调,这不仅减少了模型所需的计算资源,还提升了它们在特定任务上的性能。下一单词预测任务采用的是自监督学习(self-supervised learning)模式,这是一种自我标记的方法。这意味着我们不需要专门为训练数据收集标签,而是可以利用数据本身的结构。也就是说,我们可以使用句子或文档中的下一个词作为模型的预测标签。由于该任务允许“动态”创建标签,因此我们可以利用大量的无标注文本数据集来训练大语言模型。
四、关键点总结
- LLM(大语言模型):基于深度学习构建的超大规模语言模型,能理解、生成自然语言并执行复杂任务。
- Transformer:一种基于自注意力机制的深度学习架构,是当前主流大模型(如 GPT、BERT)的核心框架。
- GPT(生成式预训练 Transformer):基于 Transformer 的生成式预训练模型,擅长自然语言生成,如文本创作、对话交互。
- Bert(双向编码器表示来自 Transformer):基于 Transformer 的双向预训练模型,侧重自然语言理解,常用于文本分类、命名实体识别等任务。
- 预训练:在大规模无标注数据上训练模型,使其学习通用语言特征,为下游任务提供基础能力。
- 微调(FineTuning):在预训练模型基础上,使用特定任务标注数据进一步训练,使其适配具体应用场景。
- 深度学习:通过多层神经网络自动学习数据特征的机器学习领域,是当前大模型技术的基础
- Token:自然语言处理中对文本的最小处理单元,如词语、子词或字符,用于将文本转换为模型可处理的数字序列。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方优快云官方认证二维码
,免费领取【保证100%免费
】