Spark数据倾斜解决方案一:源数据预处理和过滤倾斜key

本文探讨了两种Spark数据倾斜的解决方案:通过Hive ETL预处理数据,以及过滤倾斜的key。Hive ETL可在业务需求允许时预先聚合或join,避免Spark中的数据倾斜,但可能使Hive ETL变慢。过滤倾斜key适用于少量关键数据倾斜且不影响业务的情况。总结强调在理解业务场景基础上选择合适的数据倾斜策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

前言

为什么把源数据预处理和过滤掉倾斜的key两种处理倾斜的方式写到一起?

因为这两种方式在实际的项目中场景较少而且单一,对于数据源预处理,比如原本要在spark中进行聚合或join的操作,提前到hive中去做,这种方式虽然解决了spark中数据倾斜的问题,但是hive中依然也会存在;而过滤倾斜的key的场景就更加少了。

不过虽然少见,也需要有这样的解决问题思维。

使用Hive ETL预处理数据

  • 适用场景
    导致数据倾斜的是Hive表。如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案。
  • 实现思路
    此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对数据按照key进行聚合,或者是预先和其他表进
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SunnyRivers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值