RAG(Retrieval-Augmented Generation,检索增强生成)是一种将检索与生成协同结合的技术。当大模型(如DeepSeek、Qwen、GPT)需要生成文本时,会先从外部知识库中检索相关信息,再基于检索到的内容生成答案。
在知识库的构建过程中,RAG通过向量数据库和动态更新机制,实现了高效的知识检索与内容生成;而在知识图谱的构建中,RAG则借助GraphRAG、Graphusion等框架,实现了实体关系的精准抽取与图谱的深度融合。

一、RAG
RAG(Retrieval-Augmented Generation,检索增强生成)是什么?RAG是一种结合信息检索与文本生成的人工智能技术,旨在通过引入外部知识库,解决大语言模型的幻觉问题。
RAG的核心目标是让大语言模型(LLM)在回答问题时不再仅依赖训练时的固化知识,而是动态检索最新或特定领域的资料来辅助生成答案。
RAG结合了信息检索与生成模型,通过以下三阶段工作:
检索:从外部知识库(如文档、数据库)中搜索与问题相关的信息。
增强:将检索结果作为上下文输入,辅助生成模型理解问题背景。
生成:基于检索内容和模型自身知识,生成连贯、准确的回答。
Prompt + RAG 如何实战?结合 Prompt 工程与 RAG(检索增强生成) 的实战应用需围绕数据准备、检索优化、生成控制等环节展开。
一、数据准备与向量化
- 文档预处理与分块
文档预处理通过多模态数据清洗、词形还原与依存句法分析实现文本规范化;分块环节采用递归分割与语义边界识别技术,结合知识图谱关联优化,构建动态重叠的上下文连贯单元,以平衡检索效率与信息完整性。
# 依赖安装:pip install langchain langchain-text-splittersfrom langchain_text_splitters import RecursiveCharacterTextSplitter# 示例长文本(替换为实际文本)text = """自然语言处理(NLP)是人工智能领域的重要分支,涉及文本分析、机器翻译和情感分析等任务。分块技术可将长文本拆分为逻辑连贯的语义单元,便于后续处理。"""# 初始化递归分块器(块大小300字符,重叠50字符保持上下文)text_splitter = RecursiveCharacterTextSplitter( chunk_size=300, chunk_overlap=50, separators=["\n\n", "\n", "。", "!", "?"] # 优先按段落/句子分界[2,4](@ref))# 执行分块chunks = text_splitter.split_text(text)# 打印分块结果for i, chunk in enumerate(chunks): print(f"Chunk {i+1}:\n{chunk}\n{'-'*50}")
- 向量化与存储
向量化通过Embedding模型将非结构化数据(文本、图像等)映射为高维语义向量,存储则依托专用向量数据库(如ElasticSearch的dense_vector字段、Milvus)构建高效索引(HNSW、FAISS),支持近似最近邻搜索(ANN)实现大规模向量数据的快速相似性匹配。
# 依赖安装:pip install sentence-transformers faiss-cpufrom sentence_transformers import SentenceTransformerfrom langchain_community.vectorstores import FAISS# 1. 文本向量化(使用MiniLM-L6预训练模型)model = SentenceTransformer('paraphrase-MiniLM-L6-v2')embeddings = model.encode(chunks)# 2. 向量存储到FAISS索引库vector_db = FAISS.from_texts( texts=chunks, embedding=embeddings, metadatas=[{"source": "web_data"}] * len(chunks) # 可添加元数据)# 保存索引到本地vector_db.save_local("my_vector_db")# 示例查询:检索相似文本query = "什么是自然语言处理?"query_embedding = model.encode([query])scores, indices = vector_db.similarity_search_with_score(query_embedding, k=3)print(f"Top 3相似块:{indices}")
二、检索优化技术
通过多路召回(如混合检索、HyDE改写、动态重排)提升查全率与排序质量,并利用上下文增强(知识图谱补充关系、指令级RAG动态生成Prompt)优化检索结果。
三、Prompt 工程实践
- 结构化输入设计
基于角色和场景进行约束,例如法律顾问角色与合同条款咨询场景,结合《民法典》第580条知识单元,通过“用户问题→检索知识→逻辑关联→生成答案”的思维链,分点解释并标注引用来源。
- 输出模版控制
通过预设模板化输出框架确保格式规范,并设置动态防护栏机制过滤敏感词与校验事实一致性,实现内容生成的安全性与合规性。

二、知识库和知识图谱
知识库(Knowledge Base)是什么?知识库是结构化、易操作的知识集群,通过系统性整合领域相关知识(如理论、事实、规则等),为问题求解、决策支持和知识共享提供基础平台。
RAG构建知识库的核心在于将外部知识检索与大语言模型生成能力结合,通过高效检索为生成提供上下文支持,从而提升答案的准确性和时效性。(实战的重点在文本分块Chunking和向量化Embedding)
1. 文本分块(Chunking)
文本分块是将长文本分割为较小、可管理的片段,以便更高效地处理和分析。
2. 向量化(Embedding)
向量化是将文本或数据映射为高维向量空间中的数值表示,以捕获语义特征。

RAG构建知识图谱的核心是通过结合检索技术与大语言模型(LLM),将外部知识库中的结构化与非结构化数据整合为图谱形式。知识图谱为RAG系统注入结构化推理能力,使其从“信息检索器”进化为“知识推理引擎”。
RAG构建知识图谱的关键在于检索与生成的协同,其流程包括:
- 数据预处理:将文档分割为文本块(chunking),并通过命名实体识别(NER)提取实体与关系。
- 知识图谱索引:基于提取的实体与关系,构建初始知识图谱后,运用聚类算法(例如Leiden算法)对图谱中的节点进行社区划分。
- 检索增强:在用户查询时,通过本地搜索(基于实体)或全局搜索(基于数据集主题)增强上下文,提升生成答案的准确性。

普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容

-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。

vx扫描下方二维码即可

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:

04 视频和书籍PDF合集

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)

05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!

06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)

07 deepseek部署包+技巧大全

由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

749

被折叠的 条评论
为什么被折叠?



