本文详细讲解了一个基于YOLOv11深度学习算法的农作物虫害检测系统,具体技术栈包括:YOLOv11+pytorch+Flash+SpringBoot+Vue+MySQL;
并附带完整的系统搭建部署过程、完整代码展示以及各种细节讲解等。
最终的效果图如下所示(以图片检测为例):
一、项目介绍和项目源码
1.1 项目简介
本项目是一个基于深度学习算法的农作物病虫害智能检测系统,采用YOLOV11目标检测算法为核心,结合PyTorch深度学习框架,构建了包含前端展示、后端服务和数据库管理的完整解决方案。系统支持YOLOV1至YOLOV11全系列模型,可实现图片、视频和实时摄像头三种方式的农作物病害检测。
系统主要针对四大类经济作物进行病虫害识别:玉米可检测疫病、普通锈病、灰斑病等4种状态;水稻可识别褐斑病、稻瘟病等3种病害;草莓支持角斑病、炭疽果腐病等7种病症检测;西红柿则可识别早疫病、晚疫病等9种病虫害类型。该系统可广泛应用于农业生产中的病虫害监测、预警和防治工作。
深度学习基于YOLOv11农作物病虫害检测识别系统,融合Pytorch、Flask、SpringBoot、Vue、MySQL等先进技术。识别玉米、水稻、草莓和西红柿的常见病虫害,为农业病虫害的分析、预防和管理提供智能解决方案。
技术架构上,系统采用Flask搭建深度学习服务,S