题目链接:http://hihocoder.com/problemset/problem/1634?sid=1477014
题意:给一个n*m的矩阵,其最大子矩阵为矩阵内所有值的和最大的一个子矩阵,现给一个值p,从矩阵中任选一个值替换为p或者不操作,问所有可能操作结果矩阵的最大子矩阵和的最小值为多少
思路:(u[i],d[i], l[i], r[i])四个数组分别代表第i行(列)向上(向左、向下、向右)矩阵的最大子矩阵和,可以用dp在O()的复杂度下预处理四个数组的值,具体dp方法:https://blog.youkuaiyun.com/AmarisCR/article/details/88869976
然后暴力n*m扫整个矩阵,若a[i][j]<=p则替换无效,否则更新答案为
max(MAX - a[i][j]+p,u[i-1],d[i+1],l[j-1],r[j+1])
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef double lb;
const ll mod = 1e9 + 7;
const int maxn = 150 + 50;
const ll inf = 0x3f3f3f3f;
ll u[maxn], d[maxn], l[maxn], r[maxn];
int n, m, p;
ll a[maxn][maxn];
ll res[maxn], col[maxn], MAX;
ll cmp(ll x, ll y, ll z, ll k)
{
ll tmp = max(x, y);
tmp = max(tmp, z);
return max(tmp, k);
}
int main()
{
while (~scanf("%d%d%d", &n, &m, &p))
{
MAX = -inf;
memset(u, -inf, sizeof(u));
memset(d, -inf, sizeof(d));
memset(l, -inf, sizeof(l));
memset(r, -inf, sizeof(r));
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
scanf("%lld", &a[i][j]);
}
}
for (int i = n; i >= 1; i--)
{
memset(res, 0, sizeof(res));
d[i] = max(d[i], d[i + 1]);
for (int j = i; j <= n; j++)
{
for (int k = 1; k <= m; k++)
{
res[k] += a[j][k];
}
ll tr = -inf, tmp = 0;
for (int k = 1; k <= m; k++)
{
if (tmp > 0)
{
tmp += res[k];
}
else
{
tmp = res[k];
}
tr = max(tmp, tr);
}
d[i] = max(d[i], tr);
MAX = max(tr, MAX);
}
}
for (int i = m; i >= 1; i--)
{
memset(res, 0, sizeof(res));
r[i] = max(r[i], r[i + 1]);
for (int j = i; j <= m; j++)
{
for (int k = 1; k <= n; k++)
{
res[k] += a[k][j];
}
ll tr = -inf, tmp = 0;
for (int k = 1; k <= n; k++)
{
if (tmp > 0)
{
tmp += res[k];
}
else
{
tmp = res[k];
}
tr = max(tmp, tr);
}
r[i] = max(r[i], tr);
MAX = max(tr, MAX);
}
}
for (int i = 1; i <= n; i++)
{
memset(res, 0, sizeof(res));
u[i] = max(u[i], u[i - 1]);
for (int j = i; j > 0; j-- )
{
for (int k = 1; k <= m; k++)
{
res[k] += a[j][k];
}
ll tr = -inf, tmp = 0;
for (int k = 1; k <= m; k++)
{
if (tmp > 0)
{
tmp += res[k];
}
else
{
tmp = res[k];
}
tr = max(tmp, tr);
}
u[i] = max(u[i], tr);
MAX = max(tr, MAX);
}
}
for (int i = 1; i <= m; i++)
{
memset(res, 0, sizeof(res));
l[i] = max(l[i], l[i - 1]);
for (int j = i; j > 0; j--)
{
for (int k = 1; k <= n; k++)
{
res[k] += a[k][j];
}
ll tr = -inf, tmp = 0;
for (int k = 1; k <= n; k++)
{
if (tmp > 0)
{
tmp += res[k];
}
else
{
tmp = res[k];
}
tr = max(tmp, tr);
}
l[i] = max(l[i], tr);
MAX = max(tr, MAX);
}
}
ll ans = MAX;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
if (a[i][j] <= p)continue;
ll x, y, z, k;
x = u[i - 1];
y = d[i + 1];
z = l[j - 1];
k = r[j + 1];
ll tmp = cmp(x, y, z, k);
tmp = max(tmp, MAX - a[i][j] + p);
ans = min(ans,tmp);
}
}
printf("%lld\n", ans);
}
}