题目链接:http://poj.org/problem?id=2074
题意:(这道题本身不难,,但是我一开始题意读错,就一直脑壳疼....)题目先给了两条线段,L1表示房子,L2表示道路,然后给出n条线段表示障碍物(所有线段均平行x轴),然后问道路上最大的能看到整个房子的连续道路区间
思路:1.只考虑y坐标在L1和L2之间的障碍物
2.求出每个障碍物遮挡的道路盲区区间
3.把所有区间排序,求最大未被覆盖的区间长度即可
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <string>
#include <queue>
#include <map>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 5;
const double eps = 1e-8;
//点或向量
typedef struct Point
{
double x, y;
Point(double a = 0, double b = 0)
{
x = a, y = b;
}
const Point operator+(const Point &p)const
{
return Point(x + p.x, y + p.y);
}
const Point operator-(const Point &p)const
{
return Point(x - p.x, y - p.y);
}
const Point operator/(double a)const
{
return Point(x / a, y / a);
}
//点乘
const double operator*(const Point &p)const
{
return x * p.x + y * p.y;
}
//×乘
const double operator^(const Point &p)const
{
return x * p.y - y * p.x;
}
//长度
const double len()
{
return sqrt(x*x + y * y);
}
}Point;
//线段
typedef struct Line
{
Point a, b;
}Line;
//精度比较
int cmp(double x, double y)
{
if (fabs(x - y) < eps)return 0;
if (x - y < 0)return -1;
return 1;
}
//向量夹角[0,pi]
double angle(Point x, Point y)
{
return acos((x*y) / (x.len()) / y.len());
}
//判断点是否在线段上
bool onsegement(Point p, Line s)
{
return cmp((s.a - p) ^ (s.b - p), 0) == 0 && cmp((s.a - p)*(s.b - p), 0) <= 0;
}
//判断两线段是否相交
bool inter(Line x, Line y)
{
double c1 = (x.b - x.a) ^ (y.a - x.a), c2 = (x.b - x.a) ^ (y.b - x.a),
c3 = (y.b - y.a) ^ (x.a - y.a), c4 = (y.b - y.a) ^ (x.b - y.a);
if (onsegement(x.a, y) || onsegement(x.b, y) || onsegement(y.a, x) || onsegement(y.b, x))return 1;
return cmp(c1, 0)*cmp(c2, 0) < 0 && cmp(c3, 0)*cmp(c4, 0) < 0;
}
//求两直线交点
Point getlineinter(Point x1, Point x2, Point y1, Point y2)
{
x2 = x2 - x1;
x2 = x2 / x2.len();
y2 = y2 - y1;
y2 = y2 / y2.len();
Point u = x1 - y1;
double t = (y2^u) / (x2^y2);
return x1 + Point(x2.x*t, x2.y*t);
}
Line house, proper;
Line obs;
int n;
pair<double, double> p[maxn];
int main()
{
double x1, x2, y;
while (scanf("%lf%lf%lf", &x1, &x2, &y))
{
if (cmp(x1, 0) == 0 && cmp(x2, 0) == 0 && cmp(y, 0) == 0)
{
break;
}
Point st, ed;
st.x = x1, ed.x = x2;
st.y = ed.y = y;
house.a = st, house.b = ed;
scanf("%lf%lf%lf", &x1, &x2, &y);
st.x = x1, ed.x = x2;
st.y = ed.y = y;
proper.a = st, proper.b = ed;
scanf("%d", &n);
int cnt = 0;
for (int i = 0; i < n; i++)
{
scanf("%lf%lf%lf", &x1, &x2, &y);
if (cmp(y , house.a.y)>=0 || cmp(y , proper.a.y)<=0)continue;
st.x = x1, ed.x = x2;
st.y = ed.y = y;
obs.a = st, obs.b = ed;
Point L, R;
L = getlineinter(obs.a, house.b, proper.a, proper.b);
R = getlineinter(obs.b, house.a, proper.a, proper.b);
if (cmp(L.x, proper.b.x) >= 0 || cmp(R.x, proper.a.x) <= 0)continue;
L.x = max(L.x, proper.a.x), R.x = min(R.x, proper.b.x);
p[cnt++] = pair<double, double>(L.x, R.x);
}
double ans = 0;
p[cnt++] = pair<double, double>(proper.b.x, proper.b.x);
sort(p, p + cnt);
double pre = proper.a.x;
for (int i = 0; i < cnt; i++)
{
if (cmp(p[i].first , pre)>0)
{
ans = max(ans, p[i].first - pre);
}
pre = max(p[i].second, pre);
}
if (cmp(ans, 0) == 0)
printf("No View\n");
else
printf("%.2lf\n", ans);
}
}