目录
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation (arxiv 2020.12)
Learning Invariances in Neural Networks (nips2020)
Self-supervised Pre-training with Hard Examples Improves Visual Representations (arxiv 2020.12)
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation (arxiv 2020.12)
idea:
- perform a systematic study of the Copy-Paste augmentation (e.g., [13, 12]) for instance segmentation where we randomly paste objects onto an image
- we show Copy-Paste is additive with semi-supervised methods that leverage extra data through pseudo labeling (e.g. self-training).
Introduction:
- a simple strategy of randomly picking objects and pasting them at random locations on the target image p

本文探讨了用于实例分割的简单复制粘贴数据增强技术,展示其对基线方法的显著提升。同时,介绍了神经网络中学习不变性的方法——Augerino,该方法能自动发现各种变换的不变性和等变性。此外,还讨论了一种通过创建难例进行自监督预训练的方法,以改进视觉表示。这些技术在图像分类、分割任务上表现优秀,并能与多种架构和损失函数兼容。
最低0.47元/天 解锁文章
732

被折叠的 条评论
为什么被折叠?



