Python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def decorateRecord(self, root: Optional[TreeNode]) -> List[List[int]]:
if not root:
return []
res = list()
q = collections.deque()
q.append(root)
tag = 0
while q:
cur_size = len(q)
tmp = list()
for i in range(cur_size):
cur_node = q.popleft()
tmp.append(cur_node.val)
if cur_node.left:
q.append(cur_node.left)
if cur_node.right:
q.append(cur_node.right)
if tag % 2 == 1:
tmp.reverse()
res.append(tmp.copy())
tag = (tag + 1) % 2
return res
Java
class Solution {
public List<List<Integer>> decorateRecord(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if (root == null) {
return res;
}
int layer = 1;
List<Integer> tmp = new ArrayList<>();
Queue<TreeNode> queue1 = new LinkedList<>();
Queue<TreeNode> queue2 = new LinkedList<>();
queue1.offer(root);
while (!queue1.isEmpty()) {
TreeNode topNode = queue1.poll();
if (layer % 2 == 0) { // 偶数层从前往后插入元素!!!
tmp.add(0, topNode.val);
} else {
tmp.add(topNode.val);
}
if (topNode.left != null) {
queue2.offer(topNode.left);
}
if (topNode.right != null) {
queue2.offer(topNode.right);
}
if (queue1.isEmpty()) {
res.add(new ArrayList<>(tmp));
tmp.clear();
++layer;
queue1 = new LinkedList<>(queue2);
queue2.clear();
}
}
return res;
}
}
class Solution {
public List<List<Integer>> decorateRecord(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if (Objects.isNull(root)) {
return res;
}
List<TreeNode> list1 = new LinkedList<>();
List<TreeNode> list2 = new LinkedList<>();
List<Integer> valList = new ArrayList<>();
list1.add(root);
int count = 1;
while (list1.size() > 0) {
TreeNode topNode = list1.remove(0);
valList.add(topNode.val);
if (!Objects.isNull(topNode.left)) {
list2.add(topNode.left);
}
if (!Objects.isNull(topNode.right)) {
list2.add(topNode.right);
}
if (list1.size() == 0) {
if (count % 2 == 0) {
Collections.reverse(valList);
}
res.add(new ArrayList<>(valList));
valList.clear();
list1 = new LinkedList<>(list2);
list2.clear();
++count;
}
}
return res;
}
}
#剑指offer——面试题61:按之字形顺序打印二叉树
##Solution1:
基于上一题的解法,缺点:效率低下!
/*
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};
*/
class Solution {
public:
vector<vector<int> > Print(TreeNode* pRoot) {
vector<vector<int> > res;
if(pRoot == NULL)
return res;
vector<int> temp;
int symbol = 1, cur = 1, next = 0;//若symbol%2 == 1,则是奇数行;否则是偶数行
queue<struct TreeNode*> queue_tree;
queue_tree.push(pRoot);
while(!queue_tree.empty()) {
temp.push_back(queue_tree.front()->val);
cur--;
if(queue_tree.front()->left != NULL) {
queue_tree.push(queue_tree.front()->left);
next++;
}
if(queue_tree.front()->right != NULL) {
queue_tree.push(queue_tree.front()->right);
next++;
}
if(cur == 0) {
if(symbol%2 == 1)
res.push_back(temp);
else {
vec_swap(temp);
res.push_back(temp);
}
temp.clear();
cur = next;
next = 0;
symbol++;
}
queue_tree.pop();
}
return res;
}
void vec_swap(vector<int> &temp) {
int i = 0, j = temp.size() - 1, temp_val = 0;
while(i < j) {
temp_val = temp[i];
temp[i] = temp[j];
temp[j] = temp_val;
i++;
j--;
}
return;
}
};
##Solution2:
书上的思路,用了两个栈结构来存储数据,复杂度为
O
(
n
)
O(n)
O(n),更好的算法。学习之
/*
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};
*/
class Solution {
public:
vector<vector<int> > Print(TreeNode* pRoot) {
vector<vector<int> > res;
if(pRoot == NULL)
return res;
vector<int> temp;
stack<struct TreeNode* > stack_node[2];//栈数组,数组的每个元素均是栈,栈的数据类型是TreeNode*
int cur = 0, next = 1;
stack_node[cur].push(pRoot);
while(!stack_node[0].empty() || !stack_node[1].empty()) {
temp.push_back(stack_node[cur].top()->val);
if(cur == 0) {
if(stack_node[cur].top()->left != NULL)
stack_node[next].push(stack_node[cur].top()->left);
if(stack_node[cur].top()->right != NULL)
stack_node[next].push(stack_node[cur].top()->right);
}
else {
if(stack_node[cur].top()->right != NULL)
stack_node[next].push(stack_node[cur].top()->right);
if(stack_node[cur].top()->left != NULL)
stack_node[next].push(stack_node[cur].top()->left);
}
stack_node[cur].pop();
if(stack_node[cur].empty()) {
res.push_back(temp);
temp.clear();
cur = 1 - cur;
next = 1 - next;
}
}
return res;
}
};