310. Minimum Height Trees

本文介绍了一种高效算法,用于寻找给定无向无环图(树)中的最小高度树。通过逐步移除叶子节点的方式,最终确定合适的根节点,使得树的高度达到最小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1:

Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]

    0
    |
    1
   / \
  2   3

return [1]

Example 2:

Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

 0  1  2
  \ | /
    3
    |
    4
    |
    5

return [3, 4]

Note:

(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

题意:
一个n个结点n-1条边的无向无环图(也就是树),找出以哪个节点为root时,树的高度最小?(返回所有答案)

思路:
最开始我的思路是递归,类似于DFS:先遍历得到每个结点为root时得到的树的高度,然后排序找到最小值。但写出的程序runtime error。一时找不到bug

从网上借鉴一个很巧妙的思路:类似于“剥洋葱”,一层一层的删除叶节点(入度为1),这样最后得到的一个或两个入度为1的结点就是所求。最后答案的节点数不可能大于2。假设答案有3个结点,则分别以这三个结点为root时,形成树的高度相同。用反证法证明:(觉得手稿会更清楚)

这里写图片描述

class Solution {
public:
    vector<int> findMinHeightTrees(int n, vector<pair<int, int> >& edges) {
        if (n == 1) return {0}; //注意特例的处理,如果只有一个结点0,下面的算法不适用,直接返回{0}
        vector<int> res, d(n, 0);//res保存答案,d保存每个结点的入度
        vector<vector<int> > g(n, vector<int>()); //g保存每个结点的相邻结点
        queue<int> q; //q为一个用来保存入度为1的结点的队列
        for (auto a : edges) { //依次处理每条边,初始化d和g
            g[a.first].push_back(a.second);
            ++d[a.first];
            g[a.second].push_back(a.first);
            ++d[a.second];
        }
        for (int i = 0; i < n; ++i) {//将初始时入度为1的结点保存到q中
            if (d[i] == 1) q.push(i);
        }
        while (n > 2) {如果<=2,说明达到最后一轮,跳出
            int sz = q.size();
            for (int i = 0; i < sz; ++i) { \\依次处理每轮中入度为1的结点,处理一个,pop一个
                int t = q.front(); q.pop();
                --n;
                for (int i : g[t]) { \\将入度为1的点的相邻结点入度全部-1,如果得到新的入度为1的点,则保存到q中
                    --d[i];
                    if (d[i] == 1) q.push(i);
                }
            }
        }
        while (!q.empty()) {
            res.push_back(q.front()); q.pop();
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值