For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Example 1:
Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]
0
|
1
/ \
2 3
return [1]
Example 2:
Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /
3
|
4
|
5
return [3, 4]
Note:
(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
题意:
一个n个结点n-1条边的无向无环图(也就是树),找出以哪个节点为root时,树的高度最小?(返回所有答案)
思路:
最开始我的思路是递归,类似于DFS:先遍历得到每个结点为root时得到的树的高度,然后排序找到最小值。但写出的程序runtime error。一时找不到bug。
从网上借鉴一个很巧妙的思路:类似于“剥洋葱”,一层一层的删除叶节点(入度为1),这样最后得到的一个或两个入度为1的结点就是所求。最后答案的节点数不可能大于2。假设答案有3个结点,则分别以这三个结点为root时,形成树的高度相同。用反证法证明:(觉得手稿会更清楚)
class Solution {
public:
vector<int> findMinHeightTrees(int n, vector<pair<int, int> >& edges) {
if (n == 1) return {0}; //注意特例的处理,如果只有一个结点0,下面的算法不适用,直接返回{0}
vector<int> res, d(n, 0);//res保存答案,d保存每个结点的入度
vector<vector<int> > g(n, vector<int>()); //g保存每个结点的相邻结点
queue<int> q; //q为一个用来保存入度为1的结点的队列
for (auto a : edges) { //依次处理每条边,初始化d和g
g[a.first].push_back(a.second);
++d[a.first];
g[a.second].push_back(a.first);
++d[a.second];
}
for (int i = 0; i < n; ++i) {//将初始时入度为1的结点保存到q中
if (d[i] == 1) q.push(i);
}
while (n > 2) {如果<=2,说明达到最后一轮,跳出
int sz = q.size();
for (int i = 0; i < sz; ++i) { \\依次处理每轮中入度为1的结点,处理一个,pop一个
int t = q.front(); q.pop();
--n;
for (int i : g[t]) { \\将入度为1的点的相邻结点入度全部-1,如果得到新的入度为1的点,则保存到q中
--d[i];
if (d[i] == 1) q.push(i);
}
}
}
while (!q.empty()) {
res.push_back(q.front()); q.pop();
}
return res;
}
};