题目:
Given a binary tree
struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *next; }
Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL
.
Initially, all next pointers are set to NULL
.
Note:
- You may only use constant extra space.
- You may assume that it is a perfect binary tree (ie, all leaves are at the same level, and every parent has two children).
For example,
Given the following perfect binary tree,
1 / \ 2 3 / \ / \ 4 5 6 7
After calling your function, the tree should look like:
1 -> NULL / \ 2 -> 3 -> NULL / \ / \ 4->5->6->7 -> NULL
分析:
这道题之所以放上来是因为题目中的那句话:You may only use constant extra space
这就意味着,深搜是不能用的,因为递归是需要栈的,因此空间复杂度将是 O(logn)。毫无疑问广搜也不能用,因为队列也是占用空间的,空间占用还高于 O(logn)
难就难在这里,深搜和广搜都不能用,怎么完成树的遍历?
我拿到题目的第一反应便是:用广搜,接着发现广搜不能用,便犯了难。
看了一些提示,有招了:核心仍然是广搜,但是我们可以借用 next 指针,做到不需要队列就能完成广度搜索。
如果当前层所有结点的next 指针已经设置好了,那么据此,下一层所有结点的next指针 也可以依次被设置。
代码:
/**
* Definition for binary tree with next pointer.
* struct TreeLinkNode {
* int val;
* TreeLinkNode *left, *right, *next;
* TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
* };
*/
class Solution {
public:
void connect(TreeLinkNode *root) {
if(NULL == root) return;
TreeLinkNode* curLev;
while(root -> left != NULL){
curLev = root;
while(curLev != NULL){
curLev -> left -> next = curLev -> right;
if(curLev -> next != NULL)
curLev -> right -> next = curLev -> next -> left;
curLev = curLev -> next;
}
root = root -> left;
}
}
};
引申:
Follow up for problem "Populating Next Right Pointers in Each Node".
What if the given tree could be any binary tree? Would your previous solution still work?
Note:
- You may only use constant extra space.
For example,
Given the following binary tree,
1 / \ 2 3 / \ \ 4 5 7
After calling your function, the tree should look like:
1 -> NULL / \ 2 -> 3 -> NULL / \ \ 4-> 5 -> 7 -> NULL
随后题目做了一些更改:不一定是满二叉树。
解法的核心:递推思想 依然不需要改变,依然是依据当前层的next 指针,设置下一层的 next 指针。只是找结点麻烦些,我们定义了两个函数,findNextNodeNextLev用来找(n+1)层的下一个节点,findStartNodeNextLev 用来找下一层的起始节点。
class Solution {
public:
void connect(TreeLinkNode *root) {
if(NULL == root) return;
TreeLinkNode* start;
TreeLinkNode* curNode;
TreeLinkNode* nextNode;
while(root != NULL){
start = findStartNodeNextLev(root);
curNode = start;
nextNode = findNextNodeNextLev(root, start);
while(nextNode != NULL){
curNode -> next = nextNode;
curNode = nextNode;
nextNode = findNextNodeNextLev(root, curNode);
}
root = start;
}
}
private:
TreeLinkNode* findNextNodeNextLev(TreeLinkNode* &cur, TreeLinkNode* curNextLev){
if(cur -> left == curNextLev && cur -> right != NULL){
return cur -> right;
}else{
while(cur -> next != NULL){
cur = cur -> next;
if(cur -> left != NULL && cur -> left != curNextLev) return cur -> left;
if(cur -> right != NULL && cur -> right != curNextLev) return cur -> right;
}
}
return NULL;
}
TreeLinkNode* findStartNodeNextLev(TreeLinkNode* node){
if(NULL == node) return NULL;
if(node -> left != NULL) return node -> left;
return findNextNodeNextLev(node, node -> left);
}
};