Matrix Power Series
Time Limit: 3000MS
Memory Limit: 131072K
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
思路:
题意:
- 有一个 n * n 的矩阵 a,和一个正整数 k
- 求a + a2 + a3 + … + ak
- 最后模 m 输出结果矩阵
方法:
- 矩阵快速幂
- 二分求和
- 当k为偶数时,s(k) = (1 + Ak/2) * (A + A2 + … + Ak/2),1为单位矩阵
- 当k为奇数时,s(k) = A(k+1)/2 + (1 + A(k+1)/2) * (A + A2 + … + Ak/2),1为单位矩阵
AC代码:
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define maxn 33
struct matrix{
int a[maxn][maxn];
}original,result,one;//初始,结果,单位矩阵
int n,m;//n*n矩阵模m
//矩阵乘法
matrix mul(matrix m1,matrix m2)
{
matrix result;
memset(result.a,0,sizeof(result.a));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
for(int k=1;k<=n;k++)
{
result.a[i][j]+=m1.a[i][k]*m2.a[k][j];
result.a[i][j]%=m;
}
}
}
return result;
}
//矩阵加法
matrix add(matrix m1,matrix m2)
{
matrix result;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
result.a[i][j]=m1.a[i][j]+m2.a[i][j];
result.a[i][j]%=m;
}
}
return result;
}
//矩阵快速幂
matrix mpow(matrix m1,int k)
{
if(k==1) return m1;//1次幂为原矩阵
matrix result=mpow(m1,k/2);//result=m1^(k/2)
result=mul(result,result);//result=m1^k
if(k%2!=0) result=mul(result,m1);//若k为奇数再乘一次m1
return result;
}
//将所有幂运算结果加一起
matrix ans(matrix aa,int k)
{
matrix m1,m2,m3,m4;
if(k==1) return aa;
if(k%2==0)//k为偶数
{
m1=mpow(aa,k/2);//aa^(k/2)
m2=add(one,m1);//E+aa^(k/2)
m3=ans(aa,k/2);//aa+aa^2+...+aa^(k/2)
return mul(m2,m3);
}
else//k为奇数
{
m1=mpow(aa,(k+1)/2);//aa^((k+1)/2)
m2=add(one,m1);//E+aa^((k+1)/2)
m3=ans(aa,k/2);//aa+aa^2+...+aa^(k/2)
m4=mul(m2,m3);
return add(m1,m4);
}
}
int main()
{
int k;
cin>>n>>k>>m;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
cin>>original.a[i][j];
original.a[i][j]%=m;
}
}
for(int i=1;i<=n;i++)
{
one.a[i][i]=1;//单位矩阵
}
result=ans(original,k);//结果矩阵
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(j!=1) cout<<" ";//除了第一个数每个数后面有空格
cout<<result.a[i][j]%m;
}
cout<<endl;//输出一行后换行
}
return 0;
}