前言
TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。
TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。TensorFlow将完全开源,任何人都可以用。
一、原生接口文章
- 【Tensorflow】tf.placeholder函数
- 【TensorFlow】tf.nn.conv2d是怎样实现卷积的
- 【TensorFlow】tf.nn.max_pool实现池化操作
- 【Tensorflow】tf.nn.relu函数
- 【Tensorflow】tf.reshape 函数
- 【Tensorflow】tf.nn.dropout函数
- 【Tensorflow】tf.argmax函数
- 【Tensorflow】tf.cast 类型转换 函数
- 【Tensorflow】tf.train.AdamOptimizer函数
- 【Tensorflow】tf.Graph()函数
- 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
- 【Tensorflow】tf.dynamic_partition 函数 分拆数组
二、原生接口实例
三、slim接口文章
- 【Tensorflow】tensorflow.contrib.slim 包
- 【Tensorflow slim】 slim.arg_scope的用法
- 【Tensorflow slim】slim.data包
- 【Tensorflow slim】slim evaluation 函数
- 【Tensorflow slim】slim layers包
- 【Tensorflow slim】slim learning包
- 【Tensorflow slim】slim losses包
- 【Tensorflow slim】slim nets包
- 【Tensorflow slim】slim variables包
- 【Tensorflow slim】slim metrics包

本文深入解析了TensorFlow这一谷歌开发的第二代人工智能学习系统,涵盖了从基础接口到高级应用的各个方面。不仅介绍了TensorFlow的运行原理及其在深度学习领域的广泛应用,如语音识别和图像识别,还详细探讨了关键函数如tf.placeholder、tf.nn.conv2d和tf.train.AdamOptimizer的使用方法。此外,文章还对比了原生接口与slim接口的特性,并提供了多个实战案例,帮助读者全面掌握TensorFlow的使用。
275

被折叠的 条评论
为什么被折叠?



