day55 算法训练|动态规划part15

文章讲述了如何使用动态规划方法判断字符串s是否为字符串t的子序列,介绍了dp数组的构建、递推公式、初始化过程以及遍历顺序。作者还提到了与最长公共子序列的关系和更高效的双指针解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

392.判断子序列

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

其实就是最长公共子序列的变种题:如果公共子序列长度等于s,那么返回true

    public boolean isSubsequence(String s, String t) {
        int length1 = s.length(); int length2 = t.length();
        int[][] dp = new int[length1+1][length2+1];
        for(int i = 1; i <= length1; i++){
            for(int j = 1; j <= length2; j++){
                if(s.charAt(i-1) == t.charAt(j-1)){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }else{
                    dp[i][j] = dp[i][j-1];
                }
            }
        }
        if(dp[length1][length2] == length1){
            return true;
        }else{
            return false;
        }
    }
}

还可以用双指针,效率其实更高,时间复杂度为 O(N)

class Solution {
    public boolean isSubsequence(String s, String t) {
        int i = 0, j = 0;
        while(i < s.length() && j < t.length()){
            if(s.charAt(i) == t.charAt(j)) i++;
            j++;
        }
        return i == s.length();
    }
}

115.不同的子序列 参考:代码随想录

1. dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

2. 递推公式'

这一类问题,基本是要分析两种情况

  • s[i - 1] 与 t[j - 1]相等
  • s[i - 1] 与 t[j - 1] 不相等

当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

为什么只考虑 “不用s[i - 1]来匹配” 这种情况, 不考虑 “不用t[j - 1]来匹配” 的情况呢。

这里大家要明确,我们求的是 s 中有多少个 t,而不是 求t中有多少个s,所以只考虑 s中删除元素的情况,即 不用s[i - 1]来匹配 的情况。

3. 初始化

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:那么 dp[i][0] 和dp[0][j]是一定要初始化的

dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1

再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t

4. 遍历顺序

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

class Solution {
    public int numDistinct(String s, String t) {
        int[][] dp = new int[s.length() + 1][t.length() + 1];
        for (int i = 0; i < s.length() + 1; i++) {
            dp[i][0] = 1;
        }
        
        for (int i = 1; i < s.length() + 1; i++) {
            for (int j = 1; j < t.length() + 1; j++) {
                if (s.charAt(i - 1) == t.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
                }else{
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        
        return dp[s.length()][t.length()];
    }
}

### 代码随想录算法训练Day20 学习内容与作业 #### 动态规划专题深入探讨 动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法[^1]。 #### 主要学习内容 - **背包问题系列** - 背包问题是典型的动态规划应用场景之一。这类题目通常涉及给定容量的背包以及一系列具有不同价值和重量的物品,目标是在不超过总容量的情况下最大化所选物品的价值。 - **状态转移方程构建技巧** - 构建合适的状态转移方程对于解决动态规划问题是至关重要的。这涉及到定义好dp数组(或表格),并找到从前一个状态到下一个状态之间的关系表达式[^2]。 - **优化空间复杂度方法** - 对于某些特定类型的DP问题,可以采用滚动数组等方式来减少所需的空间开销,从而提高程序效率[^3]。 #### 实战练习题解析 ##### 题目:零钱兑换 (Coin Change) 描述:给定不同面额的硬币 coins 和一个总金额 amount。编写函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 `-1`。 解决方案: ```python def coinChange(coins, amount): dp = [float('inf')] * (amount + 1) dp[0] = 0 for i in range(1, amount + 1): for coin in coins: if i >= coin and dp[i - coin] != float('inf'): dp[i] = min(dp[i], dp[i - coin] + 1) return dp[-1] if dp[-1] != float('inf') else -1 ``` 此段代码实现了基于自底向上的迭代方式解决问题,其中 `dp[i]` 表示达到金额 `i` 所需最小数量的硬币数目[^4]。 ##### 题目:完全平方数 (Perfect Squares) 描述:给出正整数 n ,找出若干个不同的 完全平方数 (比如 1, 4, 9 ...)使得它们的和等于n 。问至少需要几个这样的完全平方数? 解答思路同上一题类似,只是这里的“硬币”变成了各个可能的完全平方数值。 ```python import math def numSquares(n): square_nums = set([i*i for i in range(int(math.sqrt(n))+1)]) dp = [float('inf')] *(n+1) dp[0] = 0 for i in range(1,n+1): for sq in square_nums: if i>=sq: dp[i]=min(dp[i],dp[i-sq]+1); return dp[n]; ``` 这段代码同样运用了动态规划的思想去寻找最优解路径,并利用集合存储所有小于等于输入值的最大平方根内的平方数作为候选集[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值