书生大模型实战营闯关记录----第九关:InternVL 多模态模型部署微调实践

InternVL 部署微调实践

我们选定的任务是让InternVL-2B生成文生图提示词,这个任务需要VLM对图片有格式化的描述并输出。

让我们来一起完成一个用VLM模型进行冷笑话生成,让你的模型说出很逗的冷笑话吧。在这里,我们微调InterenVL使用xtuner。部署InternVL使用lmdeploy。

模型下载

本项目中主要下载的是1~8B的模型

多模态大语言模型 (InternVL 2.0)
Model Name Vision Part Language Part HF Link MS Link Document
InternVL2‑1B InternViT‑300M‑448px Qwen2‑0.5B‑Instruct 🤗 link 🤖 link 📖 doc
InternVL2‑2B InternViT‑300M‑448px internlm2‑chat‑1‑8b 🤗 link 🤖 link 📖 doc
InternVL2‑4B InternViT‑300M‑448px Phi‑3‑mini‑128k‑instruct 🤗 link 🤖 link 📖 doc
InternVL2‑8B InternViT‑300M‑448px internlm2_5‑7b‑chat 🤗 link 🤖 link 📖 doc

准备环境

这里我们来手动配置下xtuner。

配置虚拟环境

conda create --name xtuner python=3.10 -y

# 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行)
conda activate xtuner

# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
apt install libaio-dev
pip install transformers==4.39.3
pip install streamlit==1.36.0

安装xtuner

# 创建一个目录,用来存放源代码
mkdir -p /root/InternLM/code

cd /root/InternLM/code

git clone -b v0.1.23  https://github.com/InternLM/XTuner

进入XTuner目录

cd /root/InternLM/code/XTuner
pip install -e '.[deepspeed]'
  • 安装LMDeploy
pip install lmdeploy==0.5.3

安装验证

xtuner version

##命令

xtuner help

在这里插入图片描述

准备微调数据集

数据集构造方式参考本项目中的InternVL实践指南_官方教程

InternVL实践指南_官方教程

InternVL 微调攻略

准备数据集

数据集格式为:



# 为了高效训练,请确保数据格式为:
{
   
   
    "id": "000000033471"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值