Description
Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:
1) Every even digit appears an odd number of times in its decimal representation
2) Every odd digit appears an even number of times in its decimal representation
For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.
Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.
Input
The first line contains an integer T representing the number of test cases.
A test case consists of two numbers A and B separated by a single space representing the interval. You may assume that 1 <= A <= B <= 1019
Output
For each test case, you need to write a number in a single line: the amount of balanced numbers in the corresponding interval
Example
Input:
2
1 1000
1 9
Output:
147
4
#include <cstdio> #include <iostream> #include <cstring> #include <string> using namespace std; typedef long long LL; int a[20], b[20], base[10]; LL dp[20][59050]; // 3^10=59049 LL dfs(int len, int st, bool all0, bool limit) { if(len < 1) { int i=0; while(st) { if(i&1 && st%3==1) return 0; if(!(i&1) && st%3==2) return 0; st /= 3; i++; } return 1; } if(!limit && !all0 && dp[len][st] != -1) return dp[len][st]; int maxn = limit ? a[len] : 9; LL ret = 0; int new_st, temp=st; for(int i=0; i<=maxn; i++) { if(all0&&i==0) { new_st = st; } else { int k = temp%3; if(k<2) new_st = st + base[i]; else new_st = st - base[i]; } ret += dfs(len-1, new_st, all0&&i==0, limit&&i==maxn); temp /= 3; } if(!limit && !all0) dp[len][st] = ret; return ret; } LL f(LL x) { int len=0; while(x) { a[++len] = x % 10; x /= 10; } memset(b, 0, sizeof(b)); return dfs(len, 0, 1, 1); } void Init() { base[0]=1; for(int i=1; i<=9; i++) { base[i] = base[i-1] * 3; } } int main () { Init(); int T; LL A, B; scanf("%d", &T); memset(dp, -1, sizeof(dp)); while(T--) { scanf("%lld%lld", &A, &B); printf("%lld\n", f(B)-f(A-1)); } return 0; }
本文介绍了一种用于找出特定区间内所有平衡数数量的高效算法。平衡数是一种特殊整数,其特征在于每个偶数位出现奇数次,每个奇数位出现偶数次。通过动态规划方法,文章详细解释了如何计算给定范围内平衡数的数量。
1496

被折叠的 条评论
为什么被折叠?



