模式识别与机器学习复习题解析(2023春)

一、判断题


1 单层感知机的局限性,它仅对线性问题具有分类能力( )。T
2.多层感知机的问题是隐藏层的权值无法训练( )。T
3.ReLU和Batch Normalization都是为了解决深度神经网络优化时的梯度消失或者爆炸问题( )。T
4.感知机属于二分类线性分类模型 ( )。T
5.IMDb是谷歌、YouTube共同举办的视频标签比赛数据库,包含大量的视频画面信息、音频信息、标签信息。
6.张量指维度>2的数组,每个维度都有具体的物理意义( )。
正确答案:T
7.使用tf.Variable表示待优化张量( )。T
8.TF中,使用tf.cast可以将numpy的数据类型转换到tf的数据类型( )。F
9.tf.argmax(x):返回最大值( )。F
10.传统神经网络的缺点,BP求解中的可能出现的梯度爆炸和梯度消失的现象( )。T
11.现有imgs = tf.random.normal([3,3,3,3]),表示3张3×3的RGB通道的图像数据,则imgs[2,…]表示为读取最后一张图像。( )。T
解析:

12.模型容量过大,导致学习模型在训练集上表现较好,但在测试集上表现不佳,也就是模型的泛化能力偏弱,这种现象称之为欠拟合( )。F


13.在卷积神经网络中,感受野(Receptive Field)的原理是局部相关性假设,即基于距离的重要性分布假设,只关注与自己距离较近的那部分节点,忽略远处的节点( )。T

14.模型容量过小,模型不能够很好地学习训练数据,导致训练集上表现不佳,同时在测试集上也表现不佳,这种现象称之为过拟合( )。F

15.多元线性回归是使用多个独立变量,通过拟合最佳线性关系来预测因变量。( ):T

16.回归方程拟合程度的用R2来衡量,R2的值越接近0,拟合程度越好。()F
回归方程拟合程度的用R²来衡量,R²的值越接近1,拟合程度越好;越接近0,拟合程度越差。

17.主成分分析是一种非线性降维方法。( )F
解析:主成分分析(PCA)是一种线性降维方法,它通过将数据投影到低维空间来保留最大的方差。

18.简单线性回归使用一个自变量,通过拟合最佳线性关系来预测因变量。( )T

19.K-均值聚类是一种有监督的学习方法。( )F
解析:K-均值聚类是一种无监督的学习方法,因为它不需要标签信息。

20.线性判别分析是一种有监督的降维方法。( )T
解析:线性判别分析(LDA)是一种有监督的降维方法,它试图找到数据的低维表示,同时保留类别之间的可分离性。

21.a = tf.range(9),print(tf.minimum(a, 2))的结果是[2 2 2 3 4 5 6 7 8]( )F
解析:tf.minimum(a, 2)将返回数组a和2之间的最小值,所以tf.range(9)与2比较的结果将是[0 1 2 2 2 2 2 2 2],而不是[2 2 2 3 4 5 6 7 8]。

22.一个PFLOPS (petaFLOPS) 等于每秒1千万亿 (=10^15) 次的浮点运算()T
解析:PFLOPS(petaFLOPS)确实等于每秒1千万亿(=10^15)次的浮点运算

23.激活函数可以把当前特征空间通过一定的线性映射转换到另一个空间,让数据能够更好的被分类。( ) 正确答案:T
解析:激活函数通常用于引入非线性,使得神经网络能够学习并逼近复杂的非线性函数,而不仅仅是线性映射。

24.由于全连接层FC参数冗余,可以用全局平均池化GAP取代FC来融合学到的深度特征。( )正确答案:T

解析:全局平均池化(GAP)在某些情况下可以作为一个有效的全连接层(FC)的替代,特别是在卷积神经网络(CNN)中,以减少参数数量并防止过拟合。
25.损失函数用来解释模型在每个样本实例上的误差,损失函数的值越小,说明预测值与实际值越接近,即模型的拟合效果越好。( )正确答案:T


26.回归过程用函数拟合样本集,使样本集与拟合函数间的误差最小。( )正确答案:T
解析:

27.主成分分析是从低维空间映射到高维空间,从而实现线性可分的方法。( )正确答案:F
解析:
主成分分析(PCA)实际上是从高维空间映射到低维空间,以保留数据中的主要变化方向(即主成分),而不是从低维空间映射到高维空间。
PCA 的主要目的是降维,通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的可视化。

28.一个TFLOPS (teraFLOPS) 等于每秒1万亿 (=10^12) 次的浮点运算。( )正确答案:T

29.对[“中国”,"美国,“法国”]采用one-hot 编码,那么"中国"的编码是0100( )正确答案:F
解析: 对于 [“中国”,“美国”,“法国”] 采用 one-hot 编码,如果假设 “中国” 是第一个元素,那么 “中国” 的编码应该是 [1, 0, 0],而不是 0100(这通常表示为一个三位二进制数,但在 one-hot 编码中,我们使用向量)。

30.tf.transpose(x, perm)即改变了存储顺序,也改变了视图。( )正确答案:T
解析: 函数在 TensorFlow 中用于改变张量的维度顺序(即改变其“视图”),但它并不改变张量在内存中的实际存储顺序(除非进行了显式的内存复制操作)。然而,从用户的角度来看,它确实改变了张量的“视图”,即我们如何解释或访问其数据。

31.ReLU的输出不是zero-centered,在训练的时候很”脆弱”,一不小心有可能导致神经元”坏死”。() 正确答案:T
解析: ReLU(Rectified Linear Unit)函数的输出不是 zero-centered,这可能导致在训练时梯度消失的问题,从而使神经元“坏死”。这是 ReLU 激活函数的一个潜在缺点。

32.感受野的原理是局部相关性假设,即基于距离的重要性分布假设,只关注与自己距离较近的那部分节点,忽略更远处的节点。() 正确答案:T
解析: 感受野(Receptive Field)的原理确实基于局部相关性假设,即神经元只关注与其距离较近的那部分输入,而忽略更远处的输入。这是卷积神经网络(CNN)中的一个重要概念,有助于减少计算量和参数数量

33.散列值表示表示同一类样本在直线上投影点的离散程度。()正确答案:T
解析:散列值(Hash Value)通常用于快速查找和比较数据,而不是表示同一类样本在直线上投影点的离散程度。在机器学习和数据科学中,我们通常使用诸如方差、标准差等指标来衡量样本的离散程度。

34.使用张量进行统计计算时,使用tf.argmin(x, axis)返回最小值。()正

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值