Description
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤X ≤N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; roadi requiresTi (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
Output
Sample Input
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3
Sample Output
10 题意:第一行给出N个点 M条单向路径 以及终点位置 每个点(起点)都有一头牛要去终点 下面给出所有单向路径的起点 终点 和消耗时间 求所有牛(到达终点 再返回起点的最短时间)中的最长时间。 思路: 每个起点到终点的最短时间(多源) 可理解为终点到所有点的最短时间(单源) DIJ即可 而返回 也可以通过 改变所有路径的方向 再求终点到所有点的最短路 代码:#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #define mm 1005 #define maxx 0x3f3f3f3f using namespace std; int map[mm][mm]; int vis[mm],back_vis[mm]; int dis[mm],back_dis[mm]; int m,n,k; void dij() { int i,j,pos,minn; for(i=1; i<=m; i++) { vis[i]=0; dis[i]=map[k][i]; } vis[k]=1; for(i=1; i<m; i++) { minn=maxx; for(j=1; j<=m; j++) { if(!vis[j]&&dis[j]<minn) { minn=dis[j]; pos=j; } } vis[pos]=1; for(j=1; j<=m; j++) { if(!vis[j]&&dis[pos]+map[pos][j]<dis[j]) dis[j]=dis[pos]+map[pos][j]; } } for(i=1; i<=m; i++) { back_vis[i]=0; back_dis[i]=map[i][k]; // 换种理解(反向道路才能走) } back_vis[k]=1; for(i=1; i<m; i++) { minn=maxx; for(j=1; j<=m; j++) { if(!back_vis[j]&&back_dis[j]<minn) { minn=back_dis[j]; pos=j; } } back_vis[pos]=1; for(j=1; j<=m; j++) { if(!back_vis[j]&&back_dis[pos]+map[j][pos]<back_dis[j]) back_dis[j]=back_dis[pos]+map[j][pos]; } } } int main() { int i,j; while(~scanf("%d%d%d",&m,&n,&k)) { for(i=1; i<=m; i++) for(j=i; j<=m; j++) { if(i!=j) map[i][j]=map[j][i]=maxx; else map[i][j]=0; //自己和自己的距离为0 } int a,b,t; while(n--) { scanf("%d%d%d",&a,&b,&t); map[a][b]=t; } dij(); int maxxx=0; for(i=1; i<=m; i++) { if(dis[i]+back_dis[i]>maxxx) maxxx=dis[i]+back_dis[i]; } cout<<maxxx<<endl; } return 0; }