回溯算法经典案例 1 ——N皇后 Java

本文介绍了N皇后问题的基本概念,分析了利用回溯算法解决此问题的思路,详细阐述了如何通过集合来优化回溯过程,确保在O(1)时间内判断位置是否适合放置皇后,从而降低总时间复杂度至O(N!)。

问题分析

N 皇后问题研究的是如何将 N 个皇后放置在 N×N 的棋盘上,并且使皇后彼此之间不能相互攻击。

皇后的走法是:可以横直斜走,格数不限。因此要求皇后彼此之间不能相互攻击,等价于要求任何两个皇后都不能在同一行、同一列以及同一条斜线上。

直观的做法是暴力枚举将 N 个皇后放置在 N×N 的棋盘上的所有可能的情况,并对每一种情况判断是否满足皇后彼此之间不相互攻击。暴力枚举的时间复杂度是非常高的,因此必须利用限制条件加以优化。

显然,每个皇后必须位于不同行和不同列,因此将 N个皇后放置在 N×N 的棋盘上,一定是每一行有且仅有一个皇后,每一列有且仅有一个皇后,且任何两个皇后都不能在同一条斜线上。基于上述发现,可以通过回溯的方式寻找可能的解。

回溯的具体做法是:使用一个数组记录每行放置的皇后的列下标,依次在每一行放置一个皇后。每次新放置的皇后都不能和已经放置的皇后之间有攻击:即新放置的皇后不能和任何一个已经放置的皇后在同一列以及同一条斜线上,并更新数组中的当前行的皇后列下标。当 N 个皇后都放置完毕,则找到一个可能的解。当找到一个可能的解之后,将数组转换成表示棋盘状态的列表,并将该棋盘状态的列表加入返回列表。

由于每个皇后必须位于不同列,因此已经放置的皇后所在的列不能放置别的皇后。第一个皇后有 N 列可以选择,第二个皇后最多有 N-1 列可以选择,第三个皇后最多有 N-2 列可以选择(如果考虑到不能在同一条斜线上,可能的选择数量更少),因此所有可能的情况不会超过 N!N! 种,遍历这些情况的时间复杂度是 O(N!)。

为了降低总时间复杂度,每次放置皇后时需要快速判断每个位置是否可以放置皇后,显然,最理想的情况是在 O(1) 的时间内判断该位置所在的列和两条斜线上是否已经有皇后。

以下两种方法分别使用集合和位运算对皇后的放置位置进行判断,都可以在 O(1) 的时间内判断一个位置是否可以放置皇后,算法的总时间复杂度都是 O(N!)。

 算法分析:基于集合的回溯


为了判断一个位置所在的列和两条斜线上是否已经有皇后,使用三个

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值