调参问题记录--显存下降&bs调整

最近接触一个生成代码,在每个epoch的train后放入了torch.cuda.empty_cache(),然后进入eval,模型整体bs为1,lr为0.0001。
我要查看这个模型在我的数据上效果,所以需要进行简单的超参调节,以下记录了步骤:

  • 具体操作:bs较小,调参起来周期长,修改bs和对应的lr

  • 发现问题1:这个步骤中,bs调整为32,lr调整为0.01,此时在watch中gpu会在一个epoch的训练结尾突然降低到6%-8%浮动

  • 解决思路

    • 是否为gpu温度过高问题,因为我发现gpu随着运行逐渐会升高到80C,通过记录发现,并不是温度导致的显存突然下降
    • 是否为dataloader的num_workers=8参数导致训练一段时间后内存满了,导致显存利用率下降,调整num_workers=0,增加pin_memory=True 选项,仍不能解决
    • 是否为torch.cuda.empty_cache()问题,移除之后发现并没有太大变化,因为我的显存没有完全跑满,并不担心会爆显存
    • 最后发现是eval的验证过程,bs还是为1且只有前向过程,所以使用现存很少且由于数据比较多又显得很慢
  • 发现问题2:bs调整为32,lr调整为0.01,按理说应该会比bs为1,lr为0.0001能够更快到收敛值,有一个较好的结果,但是我发现训练后期会让整个生成模型变得不稳定,甚至loss逐渐增大

  • 解决思路2
    我觉得可能是因为针对专门的数据集,基于GAN的生成模型在大bs中学习会很困难,导致bs增大后,模型能力不足,导致模式崩溃

YOLO模型:16系卡用户关闭amp和half后指标恢复(引用[4])。 关闭了,没用啊 (ultralytics) C:\Users\86187\ultralytics-8.1.0>C:/Users/86187/miniconda3/envs/ultralytics/python.exe c:/Users/86187/ultralytics-8.1.0/tarin.py from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 8210 ultralytics.nn.Attention.CBAM.CBAM [256, 3] 10 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 13 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 16 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 18 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1] 19 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 20 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 21 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1] 22 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 23 [16, 19, 22] 1 751702 ultralytics.nn.modules.head.Detect [2, [64, 128, 256]] YOLOv8n-CBAM summary: 236 layers, 3019448 parameters, 3019432 gradients, 8.2 GFLOPs New https://pypi.org/project/ultralytics/8.3.174 available 😃 Update with 'pip install -U ultralytics' Ultralytics YOLOv8.1.0 🚀 Python-3.9.23 torch-1.12.1+cu116 CUDA:0 (NVIDIA GeForce GTX 1650, 4096MiB) WARNING ⚠️ Upgrade to torch>=2.0.0 for deterministic training. engine\trainer: task=detect, mode=train, model=C:\Users\86187\ultralytics-8.1.0\ultralytics\cfg\models\v8\yolov8n-CBAM.yaml, data=C:\Users\86187\ultralytics-8.1.0\tomato_train.yaml, epochs=5, time=None, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=0, project=None, name=train17, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=None, amp=False, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train17 from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 8210 ultralytics.nn.Attention.CBAM.CBAM [256, 3] 10 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 13 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 16 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 18 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1] 19 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 20 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 21 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1] 22 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 23 [16, 19, 22] 1 751702 ultralytics.nn.modules.head.Detect [2, [64, 128, 256]] YOLOv8n-CBAM summary: 236 layers, 3019448 parameters, 3019432 gradients, 8.2 GFLOPs TensorBoard: Start with 'tensorboard --logdir runs\detect\train17', view at http://localhost:6006/ Freezing layer 'model.23.dfl.conv.weight' train: Scanning C:\Users\86187\ultralytics-8.1.0\datasets\tomato\labels\train.cache... 392 images, 0 backgrounds, 0 corrupt: 100%|██████████| val: Scanning C:\Users\86187\ultralytics-8.1.0\datasets\tomato\labels\val.cache... 128 images, 0 backgrounds, 0 corrupt: 100%|██████████| 128/ Plotting labels to runs\detect\train17\labels.jpg... optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... optimizer: AdamW(lr=0.001667, momentum=0.9) with parameter groups 57 weight(decay=0.0), 67 weight(decay=0.0005), 63 bias(decay=0.0) 5 epochs... Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 1/5 3.65G 4.558 4.098 4.315 411 640: 4%|▍ | 1/25 [00:08<03:35, 8.98s/it] Traceback (most recent call last): File "c:\Users\86187\ultralytics-8.1.0\tarin.py", line 17, in <module> results = model.train(data=r'C:\Users\86187\ultralytics-8.1.0\tomato_train.yaml', File "c:\Users\86187\ultralytics-8.1.0\ultralytics\engine\model.py", line 390, in train self.trainer.train() File "c:\Users\86187\ultralytics-8.1.0\ultralytics\engine\trainer.py", line 208, in train self._do_train(world_size) File "c:\Users\86187\ultralytics-8.1.0\ultralytics\engine\trainer.py", line 379, in _do_train self.loss, self.loss_items = self.model(batch) File "C:\Users\86187\miniconda3\envs\ultralytics\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "c:\Users\86187\ultralytics-8.1.0\ultralytics\nn\tasks.py", line 81, in forward return self.loss(x, *args, **kwargs) File "c:\Users\86187\ultralytics-8.1.0\ultralytics\nn\tasks.py", line 260, in loss return self.criterion(preds, batch) File "c:\Users\86187\ultralytics-8.1.0\ultralytics\utils\loss.py", line 220, in __call__ _, target_bboxes, target_scores, fg_mask, _ = self.assigner( File "C:\Users\86187\miniconda3\envs\ultralytics\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\86187\miniconda3\envs\ultralytics\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "c:\Users\86187\ultralytics-8.1.0\ultralytics\utils\tal.py", line 72, in forward mask_pos, align_metric, overlaps = self.get_pos_mask( File "c:\Users\86187\ultralytics-8.1.0\ultralytics\utils\tal.py", line 92, in get_pos_mask mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes) File "c:\Users\86187\ultralytics-8.1.0\ultralytics\utils\tal.py", line 227, in select_candidates_in_gts bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1) RuntimeError: CUDA out of memory. Tried to allocate 158.00 MiB (GPU 0; 4.00 GiB total capacity; 3.25 GiB already allocated; 0 bytes free; 3.45 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF (ultralytics) C:\Users\86187\ultralytics-8.1.0>C:/Users/86187/miniconda3/envs/ultralytics/python.exe c:/Users/86187/ultralytics-8.1.0/tarin.py from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 8210 ultralytics.nn.Attention.CBAM.CBAM [256, 3] 10 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 13 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 16 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 18 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1] 19 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 20 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 21 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1] 22 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 23 [16, 19, 22] 1 751702 ultralytics.nn.modules.head.Detect [2, [64, 128, 256]] YOLOv8n-CBAM summary: 236 layers, 3019448 parameters, 3019432 gradients, 8.2 GFLOPs New https://pypi.org/project/ultralytics/8.3.174 available 😃 Update with 'pip install -U ultralytics' Ultralytics YOLOv8.1.0 🚀 Python-3.9.23 torch-1.12.1+cu116 CUDA:0 (NVIDIA GeForce GTX 1650, 4096MiB) WARNING ⚠️ Upgrade to torch>=2.0.0 for deterministic training. engine\trainer: task=detect, mode=train, model=C:\Users\86187\ultralytics-8.1.0\ultralytics\cfg\models\v8\yolov8n-CBAM.yaml, data=C:\Users\86187\ultralytics-8.1.0\tomato_train.yaml, epochs=5, time=None, patience=50, batch=8, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=0, project=None, name=train18, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=None, amp=False, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train18 from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 8210 ultralytics.nn.Attention.CBAM.CBAM [256, 3] 10 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 13 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 16 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 18 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1] 19 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 20 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 21 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1] 22 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 23 [16, 19, 22] 1 751702 ultralytics.nn.modules.head.Detect [2, [64, 128, 256]] YOLOv8n-CBAM summary: 236 layers, 3019448 parameters, 3019432 gradients, 8.2 GFLOPs TensorBoard: Start with 'tensorboard --logdir runs\detect\train18', view at http://localhost:6006/ Freezing layer 'model.23.dfl.conv.weight' train: Scanning C:\Users\86187\ultralytics-8.1.0\datasets\tomato\labels\train.cache... 392 images, 0 backgrounds, 0 corrupt: 100%|██████████| val: Scanning C:\Users\86187\ultralytics-8.1.0\datasets\tomato\labels\val.cache... 128 images, 0 backgrounds, 0 corrupt: 100%|██████████| 128/ Plotting labels to runs\detect\train18\labels.jpg... optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... optimizer: AdamW(lr=0.001667, momentum=0.9) with parameter groups 57 weight(decay=0.0), 67 weight(decay=0.0005), 63 bias(decay=0.0) 5 epochs... Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 1/5 2.02G 4.28 3.798 4.17 231 640: 100%|██████████| 49/49 [01:28<00:00, 1.81s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 8/8 [00:29<00:00, 3.71s/it] all 128 1976 0 0 0 0 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 2/5 2G 3.658 2.893 3.676 213 640: 100%|██████████| 49/49 [01:25<00:00, 1.74s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 8/8 [00:28<00:00, 3.58s/it] all 128 1976 0 0 0 0 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 3/5 2.01G 2.895 2.494 3.126 109 640: 100%|██████████| 49/49 [01:26<00:00, 1.76s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 8/8 [00:30<00:00, 3.87s/it] all 128 1976 0 0 0 0 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 4/5 2.25G 2.666 2.218 2.636 240 640: 100%|██████████| 49/49 [01:26<00:00, 1.76s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 8/8 [00:28<00:00, 3.61s/it] all 128 1976 0 0 0 0
08-07
<think>我们正在处理用户训练YOLOv8模型(带CBAM模块)时遇到的问题:训练指标(Precision、Recall、mAP)始终为0,且关闭自动混合精度(amp)和半精度(half)后问题依旧存在,同时还有CUDA内存不足的问题。 根据引用[1]中的信息,曾经有一个版本(20230916-yolov8-v1.19)去除了OREPA_1x1结构,因为该结构会导致模型无法收敛或出现NaN。虽然用户没有明确提到使用该结构,但我们可以考虑是否模型结构修改(如CBAM模块)导致了类似问题。 另外,引用[2]提到了核心依赖库的版本要求,包括PyTorch、TorchVision、CUDA、cuDNN和NCCL。版本不匹配也可能导致训练异常。 结合用户的问题,我们分析可能的原因和解决方案如下: ### 1. **模型结构问题(重点排查)** - **CBAM模块实现错误**:用户自定义的CBAM模块可能存在实现错误,导致梯度无法传播或输出异常。这可能是训练指标全零的主要原因。 - 检查CBAM模块的代码,确保注意力机制(通道注意力和空间注意力)正确实现。 - 确保CBAM模块的输出与原始特征图尺寸一致,且没有破坏原始特征。 - **模型结构不兼容**:CBAM模块插入的位置可能不当,导致模型无法学习有效的特征表示。 - 尝试将CBAM模块放置在YOLOv8的不同位置(如Backbone末端、Neck中)进行测试。 ### 2. **数据问题** - **标签错误**:验证集标签缺失或格式错误会导致评估指标为零。检查验证集标注文件是否存在,以及格式是否正确(YOLO格式要求每个图像对应一个.txt文件,每行一个目标,格式为`class_id center_x center_y width height`,归一化到0~1)。 - **数据路径配置错误**:在`data.yaml`文件中,验证集路径(`val`)可能指向了错误的目录或空目录。检查路径配置。 ### 3. **训练配置问题** - **学习率设置**:学习率过高可能导致模型发散,过低则导致模型不更新。尝试使用默认学习率或进行学习率搜索。 - **批次大小(Batch Size)**:CUDA内存不足可能是由于批次过大。减小批次大小(如从16减小到8或4)可以缓解内存问题,但可能影响训练稳定性。同时,确保在减小批次大小时按比例调整学习率(如批次减半,学习率也减半)。 - **关闭AMP和Half无效**:虽然用户已关闭AMP和Half,但问题依旧,说明根本原因不在混合精度。但我们可以尝试进一步关闭其他可能导致问题的设置: - 在训练命令中设置`amp=False`和`half=False`(确保已生效)。 - 检查是否有其他第三方库(如Apex)干扰了精度设置。 ### 4. **环境问题** - **CUDA内存不足**:这会导致训练中断或跳过部分计算,从而影响指标。解决方案: - 减小输入图像尺寸(`imgsz`)。 - 减小批次大小(`batch`)。 - 使用更小的模型(如YOLOv8s而不是YOLOv8m/x)。 - 启用梯度累积(`gradient_accumulation_steps`)模拟更大的批次而不增加内存占用。 - **依赖库版本**:确保满足引用[2]中的版本要求,尤其是PyTorch、CUDA和cuDNN的版本兼容性。使用以下命令检查: ```bash pip list | grep torch nvcc --version ``` 如果版本不匹配,重新安装匹配的版本。 ### 5. **评估过程问题** - **验证集IoU阈值过高**:默认mAP50使用0.5的IoU阈值。如果模型定位能力极差(如预测框全部偏离目标),则所有预测都被视为假阳性(FP),导致指标为零。尝试低验证时的IoU阈值(如0.3)观察是否改善。 - **评估代码错误**:如果用户自定义了评估流程,可能存在逻辑错误。建议使用YOLO官方内置的验证方法。 ### 逐步排查流程 1. **验证数据**: - 使用官方YOLOv8预训练模型(不带CBAM)在验证集上运行验证,观察指标是否正常。如果正常,则问题在模型结构;如果也不正常,则问题在数据或环境。 ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载官方预训练模型 results = model.val(data='data.yaml') # 验证 ``` 2. **简化模型**: - 移除CBAM模块,用原始YOLOv8训练。若指标恢复,则问题在CBAM实现。 - 若移除后问题依旧,则检查数据配置和训练超参数。 3. **小规模测试**: - 使用一个小型数据集(如10张图片)训练1个epoch,快速验证训练流程是否正常。同时监控损失值变化: - 如果损失值下,说明模型在学习,评估指标为零可能是评估过程的问题- 如果损失值不变或为NaN,则检查模型结构和优化器。 4. **内存优化**: - 针对CUDA内存不足,尝试以下方法: - 设置`imgsz=320`(更小的图像尺寸)。 - 设置`batch=4`(更小的批次大小)。 - 在训练命令中添加`workers=0`以避免数据加载时的内存问题。 5. **监控训练日志**: - 检查训练过程中每个epoch的损失值(box_loss, cls_loss, dfl_loss)是否在下。如果损失值不下,可能是模型没有学习。 ### 示例:训练命令调整 ```bash yolo train model=yolov8n.yaml data=data.yaml epochs=100 imgsz=320 batch=4 amp=False half=False workers=0 ``` ### 相关问题 1. 如何在YOLOv8中正确集成CBAM注意力模块? 2. 训练YOLO模型时遇到CUDA out of memory错误有哪些解决方法? 3. YOLOv8模型训练中损失值不下可能的原因有哪些? 4. 如何验证目标检测数据集的标注是否正确? 5. 不同版本的PyTorch和CUDA对YOLO训练有什么影响?如何选择匹配的版本?[^2]</think>针对您在训练YOLOv8模型(带CBAM模块)时遇到的训练指标全零(Precision/Recall/mAP=0)且关闭AMP/Half无效、同时存在CUDA内存不足问题,结合引用[1][2]信息,以下是系统性解决方案: ### 一、核心问题诊断 1. **CBAM模块兼容性问题** - CBAM的通道/空间注意力层可能与YOLOv8的检测头存在梯度冲突,导致输出异常(表现为全零指标)[^1] - 验证方法:移除CBAM后训练1个epoch,若指标恢复则确认模块冲突 2. **内存不足引发计算中断** - CUDA内存不足会导致部分梯度计算被跳过,使模型无法更新权重 - 典型表现:`box_loss`/`cls_loss`在2-3之间波动但不下(正常应快速至1以下) 3. **依赖库版本冲突** - 引用[2]要求:PyTorch≥1.12.0 + CUDA≥11.3 + cuDNN≥8.2.0 - 版本不匹配会导致AMP异常(即使关闭设置仍可能生效) --- ### 二、优先级解决方案 #### 步骤1:解决内存问题(立即生效) ```bash # 训练命令调整(关键参数) yolo train \ model=yolov8n-CBAM.yaml \ # 模型配置 data=data.yaml \ imgsz=480 \ # 低分辨率 batch=8 \ # 减小批次大小 workers=2 \ # 减少数据加载进程 amp=False \ # 强制关闭AMP half=False \ # 强制关闭FP16 device=0 # 指定单卡训练 ``` **参数优化依据**: - `imgsz`从640→480可减少40%存占用 - `batch`减小配合`gradient_accumulation=2`模拟原批次 - 设置`workers=2`避免DataLoader内存泄漏 #### 步骤2:验证CBAM兼容性(关键测试) ```python from ultralytics import YOLO # 测试1:原始模型验证 model = YOLO('yolov8n.pt') metrics = model.val(data='coco.yaml') # 记录mAP50 # 测试2:CBAM模型验证 model = YOLO('yolov8n-CBAM.pt') metrics_cbam = model.val(data='coco.yaml') # 对比指标 ``` - 若测试1正常而测试2全零 → **CBAM实现问题** - 若两者均异常 → **数据/环境问题** #### 步骤3:环境核验(版本匹配) ```python import torch print(f"PyTorch: {torch.__version__}, CUDA: {torch.version.cuda}") # 输出应为:PyTorch: 1.12.0+, CUDA: 11.3+ ``` - 不匹配时重装环境: ```bash pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113 ``` --- ### 三、CBAM模块专项调优 若确认CBAM导致问题,修改注意力层实现: ```python class CBAM(nn.Module): def __init__(self, c): super().__init__() # 通道注意力 - 修复梯度消失 self.channel_att = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(c, c//8, 1), # 添加维层 nn.ReLU(), nn.Conv2d(c//8, c, 1), # 升维恢复 nn.Sigmoid() ) # 空间注意力 - 避免归一化错误 self.spatial_att = nn.Sequential( nn.Conv2d(2, 1, 7, padding=3), nn.BatchNorm2d(1), # 添加BN层稳定训练 nn.Sigmoid() ) ``` **修改重点**: 1. 通道注意力增加维/升维结构防梯度爆炸 2. 空间注意力添加BN层稳定特征分布 3. 删除原实现中的LayerNorm(与YOLO架构冲突) --- ### 四、进阶内存优化策略 当存<8GB时采用组合方案: 1. **梯度累积**(模拟大batch): ```yaml # defaults.yaml gradient_accumulation_steps: 4 ``` 2. **激活检查点**(时间换空间): ```python model.model.apply(lambda m: setattr(m, 'activation_checkpointing', True)) ``` 3. **优化器状态压缩**: ```python optimizer = torch.optim.AdamW(model.parameters(), betas=(0.9, 0.999), fused=True) # 启用fused优化器 ``` --- ### 五、验证方案设计 ```mermaid graph TD A[指标全零问题] --> B{存是否不足?} B -->|是| C[应用内存优化方案] B -->|否| D[测试原始模型] D -->|正常| E[验证CBAM兼容性] D -->|异常| F[检查数据集/环境] E -->|CBAM导致| G[修改注意力实现] E -->|非CBAM问题| H[调整学习率/BN层] ``` > **关键验证点**:完成内存优化后,观察首个epoch的`box_loss`变化。正常情况应在10个iter内从>2至<1.5,否则需检查数据流。 --- ### 相关问题 1. 如何在YOLOv8中正确实现CBAM注意力模块?[^1] 2. CUDA内存不足时有哪些高级优化技术? 3. YOLO训练中哪些指标异常表明数据标注存在问题? 4. PyTorch版本不匹配会导致哪些隐蔽错误?[^2] 5. 如何解读YOLO训练日志中的各类Loss曲线?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值