【代码随想录】day1 数组

本文讲述了作者作为半路出家的计算机学习者,在接触数据结构时对数组、链表的理解以及二分查找的基本概念。作者提到通过卡哥的教程系统学习数据结构,包括二分查找的实现和两种移除元素的方法:暴力法和双指针法。文中还展示了C++和Python代码示例,对比了两种编程语言的感受。

因为学计算机语言是属于半路出家,在接触数据结构之前,我只了解数据的类型,从没有了解过不同数据类型的存储方式。数组、链表等等因为不同的存储方式,展现出不同的优缺点,以适应不同的用途。
代码随想录是属于把饭喂到嘴里的好!里面资料对于我这种小白来说,真的是很保姆了。之前刷过一小段时间的力扣算法,但没有坚持下来,学到链表就已经放弃。这次学习给自己一个目标:
按照卡哥的进度,完成整个数据结构的主要题目,并在平台中打卡记录
这个目标是因为卡哥的教程里还包含了很多扩展和延申的题目,但是因为我时间有限,所以先打算主要过一遍,如果有机会二刷再细致来吧

二分查找

触发条件:
二分查找的主要条件是有序,只有排列有了顺序才能通过二分法减少查找次数

注意事项:
查找区间**[a,b]还是[a, b)**
我个人还是比较熟悉**[a, b)这种方法右等左加**

具体代码:

class Solution:
    def search(self, nums: List[int], target: int) -> int:
        left, right = 0, len(nums)  # 定义target在左闭右开的区间里,即:[left, right)

        while left < right:  # 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
            middle = left + (right - left) // 2

            if nums[middle] > target:
                right = middle  # target 在左区间,在[left, middle)中
            elif nums[middle] < target:
                left = middle + 1  # target 在右区间,在[middle + 1, right)中
            else:
                return middle  # 数组中找到目标值,直接返回下标
        return -1  # 未找到目标值

移除元素

触发条件:
空间复杂度为O(1)(即原地移除,不能构建新的数组),移除val值后的数组大小

注意事项:
有两种方法可以解决下列问题:
①暴力法: 2个for (一个原数组、一个新数组)、O(n^2)的时间复杂度

// 时间复杂度:O(n^2)
// 空间复杂度:O(1)
class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int size = nums.size();
        for (int i = 0; i < size; i++) {
            if (nums[i] == val) { // 发现需要移除的元素,就将数组集体向前移动一位
                for (int j = i + 1; j < size; j++) {
                    nums[j - 1] = nums[j];
                }
                i--; // 因为下标i以后的数值都向前移动了一位,所以i也向前移动一位
                size--; // 此时数组的大小-1
            }
        }
        return size;

    }
};

②双指针法:快指针找元素、慢指针定位置,O(n)的时间复杂度

// 时间复杂度:O(n)
// 空间复杂度:O(1)
class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int slowIndex = 0;
        for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
            if (val != nums[fastIndex]) {
                nums[slowIndex++] = nums[fastIndex];
            }
        }
        return slowIndex;
    }
};

虽然我更熟悉python,但是感觉这里C++的代码更有感觉,更好理解

以下是我的python代码:

class Solution:
    def removeElement(self, nums: List[int], val: int) -> int:
        slowindex = 0
        fastindex = 0
        num_long = len(nums)
        while fastindex < num_long:
            if val != nums[fastindex]:
                nums[slowindex] = nums[fastindex]
                slowindex += 1
            fastindex += 1 
        return slowindex
### 关于代码随想录 Day04 的学习资料与解析 #### 一、Day04 主要内容概述 代码随想录 Day04 的主要内容围绕 **二叉树的遍历** 展开,包括前序、中序和后序三种遍历方式。这些遍历可以通过递归实现,也可以通过栈的方式进行迭代实现[^1]。 #### 二、二叉树的遍历方法详解 ##### 1. 前序遍历(Pre-order Traversal) 前序遍历遵循访问顺序:根节点 -> 左子树 -> 右子树。以下是基于递归的实现: ```python def preorderTraversal(root): result = [] def traversal(node): if not node: return result.append(node.val) # 访问根节点 traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 对于迭代版本,则可以利用显式的栈来模拟递归过程: ```python def preorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: result.append(current.val) # 访问当前节点 stack.append(current) # 将当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 current = current.right # 转向右子树 return result ``` ##### 2. 中序遍历(In-order Traversal) 中序遍历遵循访问顺序:左子树 -> 根节点 -> 右子树。递归实现如下: ```python def inorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 result.append(node.val) # 访问根节点 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 迭代版本同样依赖栈结构: ```python def inorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: stack.append(current) # 当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 result.append(current.val) # 访问当前节点 current = current.right # 转向右子树 return result ``` ##### 3. 后序遍历(Post-order Traversal) 后序遍历遵循访问顺序:左子树 -> 右子树 -> 根节点。递归实现较为直观: ```python def postorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 result.append(node.val) # 访问根节点 traversal(root) return result ``` 而迭代版本则稍复杂一些,通常采用双栈法或标记法完成: ```python def postorderTraversal_iterative(root): if not root: return [] stack, result = [root], [] while stack: current = stack.pop() result.insert(0, current.val) # 插入到结果列表头部 if current.left: stack.append(current.left) # 先压左子树 if current.right: stack.append(current.right) # 再压右子树 return result ``` #### 三、补充知识点 除了上述基本的二叉树遍历外,Day04 还可能涉及其他相关内容,例如卡特兰数的应用场景以及组合问题的基础模板[^2][^4]。如果遇到具体题目,可以根据实际需求调用相应算法工具。 --- ####
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值