【AI理论学习】语言模型:掌握BERT和GPT模型

本文详细介绍了BERT和GPT模型的原理与差异。BERT采用双向Transformer和Masked Language Model进行预训练,通过添加额外输出层适应不同下游任务。GPT则使用单向Transformer Decoder,擅长自然语言生成。两者在预训练和微调阶段有显著区别,BERT使用预训练的双向表示,GPT则基于上文预测单词。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


ELMo模型可以根据上下文更新词的特征表示,实现了词向量由静态向动态的转变。但是由于ELMo依赖于双向语言模型的架构,导致其训练只能适用于小规模的语料库,计算效率并不高。为了解决这些问题,基于Transformer框架的BERT和GPT模型被提出来。

BERT模型

BERT的基本原理

BERT的全称为Bidirectional Encoder Representation from Transformers,是一个预训练的语言表征模型。它强调了不再像以往一样采用传统的单向语言模型或者把两个单向语言模型进行浅层拼接的方法进行预训练,而是采用新的masked language model(MLM),以致能生成深度的双向语言表征。BERT论文发表时提及在11个NLP(Natural Language Processing,自然语言处理)任务中获得了新的state-of-the-art的结果,令人目瞪口呆。

该模型有以下主要优点:
1)采用MLM对双向的Transformers进行预训练,以生成深层的双向语言表征
2)预训练后,只需要添加一个额外的输出层进行fine-tune,就可以在各种

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值