【图神经网络】图神经网络(GNN)学习笔记:图滤波器与图卷积神经网络

4. 图滤波器

在图信号处理中,我们将图滤波器定义为对给定图信号的频谱中各个频率分量的强度进行增强或衰减的操作

假设图滤波器为 H ∈ R N × N , H : R N → R N H\in R^{N\times N},H:R^N\rightarrow R^N HRN×NH:RNRN,令输出图信号为 y y y,则:
y = H x = ∑ k = 1 N ( h ( λ k ) x ~ k ) v k y=Hx=\sum_{k=1}^N(h(\lambda_k)\tilde x_k)v_k y=Hx=k=1N(h(λk)x~k)vk
可以清楚地看到增强还是衰减是通过 h ( λ ) h(\lambda) h(λ)项来控制的。对上式进行变换:
y = H x = ∑ k = 1 N ( h ( λ k ) x ~ k ) v k = [ . . . . . . . . . . . . v 1 v 2 . . . v N . . . . . . . . . . . . ] [ h ( λ 1 ) x ~ 1 h ( λ 2 ) x ~ 2 . . . h ( λ N ) x ~ N ] = V [ h ( λ 1 ) h ( λ 2 ) . . . h ( λ N ) ] [ x ~ 1 x ~ 2 . . . x ~ N ] = V [ h ( λ 1 ) h ( λ 2 ) . . . h ( λ N ) ] V T x y=Hx=\sum_{k=1}^N(h(\lambda_k)\tilde x_k)v_k=\begin{bmatrix}... & ... & ... & ...\\v_1 & v_2 & ... & v_N\\... & ... & ... & ... \end{bmatrix}\begin{bmatrix}h(\lambda _1)\tilde x_1 \\h(\lambda _2)\tilde x_2 \\ ... \\h(\lambda _N)\tilde x_N\end{bmatrix}=V\begin{bmatrix}h(\lambda _1) & & & \\ & h(\lambda _2) & & \\ & & ... & \\ & & & h(\lambda _N)\end{bmatrix}\begin{bmatrix}\tilde x_1 \\\tilde x_2 \\ ... \\\tilde x_N\end{bmatrix}=V\begin{bmatrix}h(\lambda _1) & & & \\ & h(\lambda _2) & & \\ & & ... & \\ & & & h(\lambda _N)\end{bmatrix}V^Tx y=Hx=k=1N(h(λk)x~k)vk=...v1......v2...............vN...h(λ1)x~1h(λ2)x~2...h(λN)x~N=Vh(λ1)h(λ2)...h(λN)x~1x~2...x~N=Vh(λ1)h(λ2)...h(λN)VTx
于是得到
H = V [ h ( λ 1 ) h ( λ 2 ) . . . h ( λ N ) ] V T = V Λ h V T H = V\begin{bmatrix}h(\lambda _1) & & & \\ & h(\lambda _2) & & \\ & & ... & \\ & & & h(\lambda _N)\end{bmatrix}V^T=V\Lambda_hV^T H=V

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值