【图神经网络】图神经网络(GNN)学习笔记:图基本特性代码

图神经网络学习笔记
本文介绍了使用Python和NetworkX库进行图神经网络的基础知识学习,包括图的基本特性如度、连通分量、图直径等,并提供了具体实现代码。同时针对代码运行中出现的问题给出了解决方案。

图神经网络学习笔记:图基本特性代码

图基本特性代码

  • 连通分量
  • 图直径
  • 度中心性
  • 特征向量中心性
  • closeness
  • pagerank
  • HITS

代码

#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @FileName  :1.图基础知识.py
# @Time      :2022/1/18 10:53
# @Author    :PangXZ
import numpy as np
import pandas as pd
import networkx as nx

edges = pd.DataFrame()
edges['sources'] = [1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5]
edges['targets'] = [2, 4, 5, 3, 1, 2, 5, 1, 5, 1, 3, 4]
edges['weights'] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

if __name__ == "__main__":
    print(nx.__version__)
    G = nx.from_pandas_edgelist(edges, source='sources', target='targets', edge_attr='weights')
    # degree
    print(nx.degree(G))
    # 连通分量
    print(list(nx.connected_components(G)))
    # 图直径
    print(nx.diameter(G))
    # 度中心性
    print(nx.eigenvector_centrality(G))
    # 特征向量中心性
    print(nx.betweenness_centrality(G))
    # closeness
    print(nx.closeness_centrality(G))
    # pagerank
    print(nx.pagerank(G))
    # HITS
    print(nx.hits(G))

问题:

  1. IndexError: tuple index out of range
    解决办法:检查networkx的版本,这里的版本为2.5,将其升级到2.5.1即可。
pip install -U networkx

执行结果

执行结果

参考资料

[1] https://github.com/erdogant/bnlearn/issues/24

# GPF ## 一、GPF(Graph Processing Flow):利用图神经网络处理问题的一般化流程 1、节点预表示:利用NE框架,直接获得全每个节点的Embedding; 2、正负样本采样:(1)单节点样本;(2)节点对样本; 3、抽取封闭子:可做类化处理,建立一种通用数据结构; 4、子特征融合:预表示、节点特征、全局特征、边特征; 5、网络配置:可以是输入、输出的网络;也可以是输入,分类/聚类结果输出的网络; 6、训练和测试; ## 二、主要文件: 1、graph.py:读入数据; 2、embeddings.py:预表示学习; 3、sample.py:采样; 4、subgraphs.py/s2vGraph.py:抽取子; 5、batchgraph.py:子特征融合; 6、classifier.py:网络配置; 7、parameters.py/until.py:参数配置/帮助文件; ## 三、使用 1、在parameters.py中配置相关参数(可默认); 2、在example/文件夹中运行相应的案例文件--包括链接预测、节点状态预测; 以链接预测为例: ### 1、导入配置参数 ```from parameters import parser, cmd_embed, cmd_opt``` ### 2、参数转换 ``` args = parser.parse_args() args.cuda = not args.noCuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if args.hop != 'auto': args.hop = int(args.hop) if args.maxNodesPerHop is not None: args.maxNodesPerHop = int(args.maxNodesPerHop) ``` ### 3、读取数据 ``` g = graph.Graph() g.read_edgelist(filename=args.dataName, weighted=args.weighted, directed=args.directed) g.read_node_status(filename=args.labelName) ``` ### 4、获取全节点的Embedding ``` embed_args = cmd_embed.parse_args() embeddings = embeddings.learn_embeddings(g, embed_args) node_information = embeddings #print node_information ``` ### 5、正负节点采样 ``` train, train_status, test, test_status = sample.sample_single(g, args.testRatio, max_train_num=args.maxTrainNum) ``` ### 6、抽取节点对的封闭子 ``` net = until.nxG_to_mat(g) #print net train_graphs, test_graphs, max_n_label = subgraphs.singleSubgraphs(net, train, train_status, test, test_status, args.hop, args.maxNodesPerHop, node_information) print('# train: %d, # test: %d' % (len(train_graphs), len(test_graphs))) ``` ### 7、加载网络模型,并在classifier中配置相关参数 ``` cmd_args = cmd_opt.parse_args() cmd_args.feat_dim = max_n_label + 1 cmd_args.attr_dim = node_information.shape[1] cmd_args.latent_dim = [int(x) for x in cmd_args.latent_dim.split('-')] if len(cmd_args.latent_dim) == 1: cmd_args.latent_dim = cmd_args.latent_dim[0] model = classifier.Classifier(cmd_args) optimizer = optim.Adam(model.parameters(), lr=args.learningRate) ``` ### 8、训练和测试 ``` train_idxes = list(range(len(train_graphs))) best_loss = None for epoch in range(args.num_epochs): random.shuffle(train_idxes) model.train() avg_loss = loop_dataset(train_graphs, model, train_idxes, cmd_args.batch_size, optimizer=optimizer) print('\033[92maverage training of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m' % (epoch, avg_loss[0], avg_loss[1], avg_loss[2])) model.eval() test_loss = loop_dataset(test_graphs, model, list(range(len(test_graphs))), cmd_args.batch_size) print('\033[93maverage test of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m' % (epoch, test_loss[0], test_loss[1], test_loss[2])) ``` ### 9、运行结果 ``` average test of epoch 0: loss 0.62392 acc 0.71462 auc 0.72314 loss: 0.51711 acc: 0.80000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 10.09batch/s] average training of epoch 1: loss 0.54414 acc 0.76895 auc 0.77751 loss: 0.37699 acc: 0.79167: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 34.07batch/s] average test of epoch 1: loss 0.51981 acc 0.78538 auc 0.79709 loss: 0.43700 acc: 0.84000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.64batch/s] average training of epoch 2: loss 0.49896 acc 0.79184 auc 0.82246 loss: 0.63594 acc: 0.66667: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 2: loss 0.48979 acc 0.79481 auc 0.83416 loss: 0.57502 acc: 0.76000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.70batch/s] average training of epoch 3: loss 0.50005 acc 0.77447 auc 0.79622 loss: 0.38903 acc: 0.75000: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 34.03batch/s] average test of epoch 3: loss 0.41463 acc 0.81132 auc 0.86523 loss: 0.54336 acc: 0.76000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.57batch/s] average training of epoch 4: loss 0.44815 acc 0.81711 auc 0.84530 loss: 0.44784 acc: 0.70833: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 4: loss 0.48319 acc 0.81368 auc 0.84454 loss: 0.36999 acc: 0.88000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 10.17batch/s] average training of epoch 5: loss 0.39647 acc 0.84184 auc 0.89236 loss: 0.15548 acc: 0.95833: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 5: loss 0.30881 acc 0.89623 auc 0.95132 ```
### 图神经网络 (GNN) 学习资源 对于希望深入了解图神经网络(Graph Neural Networks, GNNs)的学习者来说,有多种高质量的教程、论文和技术博客可以作为参考资料。 #### 论文阅读 一些重要的研究工作奠定了现代GNN的基础。例如,《DeepWalk: Online Learning of Social Representations》探讨了如何通过随机游走的方式捕捉社交网络中的节点特征[^1];《node2vec: Scalable Feature Learning for Networks》则进一步扩展了这一思路,提出了更灵活的方法来生成节点嵌入表示;而《Semi-Supervised Classification with Graph Convolutional Networks》引入了一种基于卷积操作处理形数据的新框架——GCN(Graph Convolutional Network),它能够有效地利用未标记的数据进行半监督分类任务。 #### 教程视频 除了学术文章外,在线教育平台也提供了许多易于理解的教学材料。比如B站上有一个名为“GNN从入门到精通”的系列课程,该课程由浅入深地讲解了有关GNN的知识点,并配有实际案例分析和编程练习[^3]。 #### 技术文档与笔记整理 为了帮助初学者更好地掌握理论概念并应用于实践当中,“【GNN图神经网络学习小结and笔记汇总”这份总结性的资料非常有价值。这里不仅包含了对核心算法原理详尽解释的文字描述,还有配套代码实现供读者参考学习[^2]。 ```python import torch from torch_geometric.nn import GCNConv class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = GCNConv(dataset.num_node_features, 16) self.conv2 = GCNConv(16, dataset.num_classes) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1) ``` 上述Python代码片段展示了如何使用PyTorch Geometric库构建简单的两层GCN模型来进行节点分类预测。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值