Text Generation from Knowledge Graphs with Graph Transformers
基于图转换器从知识图谱中生成文本
Rik Koncel-Kedziorski1 , Dhanush Bekal1 , Yi Luan1 , Mirella Lapata2 , and Hannaneh Hajishirzi1,3
1University of Washington {kedzior,dhanush,luanyi,hannaneh}@uw.edu
2University of Edinburgh mlap@inf.ed.ac.uk
3Allen Institute for Artificial Intelligence
摘要:生成表达跨越多个句子的复杂思想的文本需要对其内容进行结构化表示,但是手工生成这些表示非常昂贵。在这项工作中,我们解决了从一个信息提取系统的输出,特别是一个知识图谱生成连贯的多句文本的问题。图形化知识表示在计算中是普遍存在的,但由于其非层次性、远程依赖关系的崩溃和结构的多样性,给文本生成技术带来了巨大的挑战。本文介绍了一种新的图形转换编码器,它可以利用这些知识图谱的关系结构,而不需要施加线性化或层次约束。结合编解码器的设置,我们提供了一个端到端可训练的系统,用于生成应用于科学文本领域的图形到文本的生成。自动和人工评估表明,我们的技术产生了更多的信息文本,显示出更好的文档结构比竞争的编译码方法。