PSO-LSTM 回归预测 Tensorflow框架下执行

该文通过Python编程实现了一个基于LSTM的预测模型,使用了TensorFlow和Keras库。数据经过归一化处理后,利用粒子群优化算法(PSO)调整LSTM模型的学习率和神经元数量,以降低过拟合风险。经过训练和验证,最终模型的性能通过MSE评估,并将结果导出至Excel文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

加载相应的包

import pandas as pd
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras import metrics
from sklearn.preprocessing import MinMaxScaler
from pyswarm import pso
from tensorflow.keras import optimizers
from keras.layers import Dropout

加载数据集 进行归一化和划分 这边时间步长设置为1

# 加载数据
df = pd.read_excel(r'C:\Users\Admin\Desktop\XAJ.xlsx', sheet_name='PREQ',index_col=0)
column_names = df.columns
scaler = MinMaxScaler()
data = scaler.fit_transform(df)
target = data[:,-1]
features = data[:,:-1]

# 划分训练集和测试集
size = len(features)
train_size = int(size * 0.8)
x_train = features[:train_size]
y_train = target[:train_size]
x_test = features[train_size:]
y_test = target[train_size:]

time_steps = 1
# 训练集
x_train_lstm = np.zeros((x_train.shape[0] - time_steps + 1, time_steps, x_train.shape[1]))
y_train_lstm = np.zeros((y_train.shape[0] - time_steps + 1))

# 验证集
x_test_lstm = np.zeros((x_test.shape[0] - time_steps + 1, time_steps, x_test.shape[1]))
y_test_lstm = np.zeros((y_test.shape[0] - time_steps + 1))

# 写入数据
for i in range(x_train_lstm.shape[0]):
    x_train_lstm[i] = x_train[i:i + time_steps]
    y_train_lstm[i] = y_train[i + time_steps - 1]
for i in range(x_test_lstm.shape[0]):
    x_test_lstm[i] = x_test[i:i + time_steps]
    y_test_lstm[i] = y_test[i + time_steps - 1]

加载LSTM模型 主要优化的学习率和神经单元数 为防止过拟合设置Dropout层设置为0.05

def train_lstm_model(params):
    learning_rate = params[0]
    num_neurons = int(params[1])

    # Build LSTM model
    model = Sequential()
    model.add(LSTM(num_neurons, input_shape=(time_steps, x_train.shape[1])))
    model.add(Dropout(0.05))
    model.add(Dense(1))
    optimizer = optimizers.Adam(learning_rate=learning_rate)
    model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[metrics.mean_absolute_error])

    history = model.fit(x_train_lstm, y_train_lstm, epochs=300, batch_size=8)
    score = model.evaluate(x_test_lstm, y_test_lstm)
    return score[0]

PSO对参数进行优化 适应度函数选择mse

def objective(params):
    learning_rate = params[0]
    num_neurons = params[1]
    lstm_params = [learning_rate, int(num_neurons)]
    mse = train_lstm_model(lstm_params)

    return mse


lb = [0.001, 32]
ub = [0.1, 128]
opt_params, mse = pso(objective, lb, ub, swarmsize=20, omega=1.2, phip=2, phig=2,maxiter=100)

显示优化后的结果 并反归一化将预测结果输出到excel中

# 打印最佳参数
model = Sequential()
model.add(LSTM(int(opt_params[1]), input_shape=(time_steps, x_train.shape[1])))
model.add(Dropout(0.05))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer=optimizers.Adam(learning_rate=opt_params[0]), metrics=[metrics.mean_absolute_error])
model.fit(x_train_lstm, y_train_lstm, epochs=300, batch_size=8)
score = model.evaluate(x_test_lstm, y_test_lstm)
print("Best parameters: learning_rate = {:.6f}, num_neurons = {}".format(opt_params[0], int(opt_params[1])))
print(score)
pred_test = model.predict(x_test_lstm)
pred_train = model.predict(x_train_lstm)
y = np.append(pred_train,pred_test,axis=0)
x = np.append(x_train,x_test,axis=0)
xy = np.append(x,y,axis=1)
xyf = scaler.inverse_transform(xy)
xys = pd.DataFrame(xyf,columns=column_names)
xys.to_excel(r'C:\Users\Admin\Desktop\归一化\min.xlsx', sheet_name='PREQ', index=False)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Peanut-uu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值