LeetCode121 Best Time to Buy and Sell Stock

本文介绍了一种寻找股票买卖最佳时机以实现最大利润的算法。该算法通过一次遍历记录最低买入价格,并计算每次可能的卖出利润,最终返回最大利润。示例中展示了如何在给定的价格序列中找到最佳买卖时机。

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (i.e., buy one and sell one share of the stock), design an algorithm to find the maximum profit.

Note that you cannot sell a stock before you buy one.

Example 1:

Input: [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
             Not 7-1 = 6, as selling price needs to be larger than buying price.

Example 2:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

<思路>记录最大最小值的方法。

class Solution(object):
    def maxProfit(self, prices):
        """
        :type prices: List[int]
        :rtype: int
        """
        if len(prices)==0:
            return 0
        profit = 0
        pro =[0]
        min = prices[0]

        for price in prices[1:]:
            if price < min:
                min = price
            if price > min:
                profit = price - min
                pro.append(profit)

        return max(pro)

 

 

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
### LeetCode 121 题目解析 LeetCode121 题名为 **Best Time to Buy and Sell Stock**,其目标是在给定的价格数组中找到最大利润。可以通过一次交易(买入和卖出)来最大化收益。 #### 动态规划解法分析 对于该问题,可以采用动态规划的方法解决。以下是详细的解释: 定义状态变量 `T_i` 表示到第 `i` 天为止的最大利润。为了计算这个值,我们需要维护两个关键的状态: - 当前最低价格 `min_price`:表示在当前天之前股票的最低购买价格。 - 利润更新逻辑:每天尝试更新最大利润为当天价格减去之前的最低价格。 具体实现如下所示[^4]: ```cpp class Solution { public: int maxProfit(vector<int>& prices) { if (prices.empty()) return 0; int minPrice = INT_MAX; // 初始化最小价格为正无穷大 int maxProfit = 0; // 初始化最大利润为零 for (const auto& price : prices) { minPrice = std::min(minPrice, price); // 更新最低价格 maxProfit = std::max(maxProfit, price - minPrice); // 计算并更新最大利润 } return maxProfit; } }; ``` 上述代码的核心在于通过单次遍历完成所有操作,时间复杂度为 \(O(n)\),空间复杂度为 \(O(1)\)[^4]。 --- #### 关键点说明 1. 使用动态规划的思想时,虽然表面上看起来是一个贪心算法的应用场景,但实际上它也可以被看作是一种简化版的动态规划方法。这里的关键是利用了历史数据中的最优点(即最低价),从而减少了不必要的重复计算[^5]。 2. 对于更复杂的买卖次数限制情况(如最多两次交易等问题),则需要用到多维 DP 数组或者额外的状态变量来进行建模[^3]。 --- ### 总结 针对 LeetCode121 题的最佳解决方案之一就是基于动态规划思想设计出的时间效率高的线性扫描算法。这种方法不仅简单易懂而且性能优越,在实际应用中有很高的价值[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值