【图解】RNN模型结构详解、教程

一、图解RNN神经网络

注意点:rnn网络权重矩阵h是自带激活函数的默认tanh

参数表如下:

二、参考学习过的博客

Pytorch循环神经网络(RNN)快速入门与实战_torch rnn-优快云博客

这个文章中的batch_first=true输入的参数是错的,不要看他的代码,他那个hidden_prev 压根自己没搞懂怎么回事。

这个博客提供了两种应用及两种RNN连接方式

第一种:

如,现在要用RNN做房价预测。如果目标是 输入今年1-6月的房价,输出是7-12月的房价,那可以直接将隐含层的输出作为网络输出。

第二种:

如果目标是 输入今年1-12月份的房价,输出是预测的明年1月的房价,那此时循环神经网络经过隐含层后,可以接入一个全连接层,也可以将最后时刻隐含层的输出作为网络输出,分别如下图(a)(b)所示。

初学者入门,使用pytorch构建RNN网络</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIScholar_lrm

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值