@TOC
一、实践操作
1)用图画板或其他图像编辑软件(Photoshop/GIMP、cximage、IrfanView等)打开一个彩色图像文件,将其分别保存为 32位、16位彩色和256色、16色、单色的位图(BMP)文件,对比其文件大小,并计算分析这些图片在内存中的存储容量是多少?当保存为BMP文件时,将用文件头来记录图像的属性,请问:BMP文件头是多大?是什么格式?上述5个类型的BMP的文件头内容有什么差异?
2)将一幅彩色照片分别保存为BMP、JPG、GIF和PNG格式,对比它们的文件大小比,判断图像的压缩保存后的压缩比率。
1.位图
以画图为打开方式打开图片
然后保存为bmp文件,保存类型为16色位图
位图大小计算公式为:长×高×位深度
如下图((512×512×1)/8)/1024=32kb
0~1 两个字节为文件类型,0x4d42为固定BM
2~5 四个字节为文件大小,0x184e,即6222
6~9 四个字节为保留字段,全0
a~d 四个字节为从文件头到实际的位图数据的偏移字节数
12~15 四个字节表示图片宽度,0xdc为220
16~19 四个字节表示图片高度,0xdc为220
1a~1b 两个字节,恒定为0x1
1c~1d 两个字节表示像素占的比特,这里为0x1即两种颜色,16色为0x4即16种颜色,256色为0x8即256种颜色
1e~21 四个字节表示图片是否压缩,0x0表示不压缩
22~25 四个表示图像大小,0x1810为6160
26~29 四个字节表示水平分辨率
2a~2d 四个字节表示垂直分辨率
23~31 四个字节表示实际使用的颜色索引数
32~35 四个字节表示重要的颜色索引数
可以发现文件头一共占40个字节,为十六进制。
对于不同的图片,文件大小、长、宽、像素占比都不同。
2.文件压缩比
原图是24位bmp文件,大小768kb
经过jpg转换后大小变为89.7kb,压缩率在11.6%
经过gif转换后大小变为133kb,压缩率在17.3%
经过png转换后大小变为699kb,压缩率在91%
经过256色位图转换后大小变为257kb,压缩率在33.5%
二、图像处理编程
1.奇异值分解(SVD)
代码
import numpy as np
import os
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib as mpl
from pprint import pprint
def restore1(sigma, u, v, K): # 奇异值、左特征向量、右特征向量
m = len(u)
n = len(v[0])
a = np.zeros((m, n))
for k in range(K):
uk = u[:, k].reshape(m, 1)
vk = v[k].reshape(1, n)
a += sigma[k] * np.dot(uk, vk)
a[a < 0] = 0
a[a > 255] = 255
# a = a.clip(0, 255)
return np.rint(a).astype('uint8')
def restore2(sigma, u, v, K): # 奇异值、左特征向量、右特征向量
m = len(u)
n = len(v[0])
a = np.zeros((m, n))
for k in range(K+1):
for i in range(m):
a[i] += sigma[k] * u[i][k] * v[k]
a[a < 0] = 0
a[a > 255] = 255
return np.rint(a).astype('uint8')
if __name__ == "__main__":
A = Image.open("./1.png", 'r')
print(A)
output_path = r'./SVD_Output'
if not os.path.exists(output_path):
os.mkdir(output_path)
a = np.array(A)
print(a.shape)
K = 50
u_r, sigma_r, v_r = np.linalg.svd(a[:, :, 0])
u_g, sigma_g, v_g = np.linalg.svd(a[:, :, 1])
u_b, sigma_b, v_b = np.linalg.svd(a[:, :, 2])
plt.figure(figsize=(11, 9), facecolor='w')
mpl.rcParams['font.sans-serif'] = ['simHei']
mpl.rcParams['axes.unicode_minus'] = False
for k in range(1, K+1):
print(k)
R = restore1(sigma_r, u_r, v_r, k)
G = restore1(sigma_g, u_g, v_g, k)
B = restore1(sigma_b, u_b, v_b, k)
I = np.stack((R, G, B), axis=2