在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。
一、Roberts算子
Roberts算子又称交叉微分算法,它是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条,常来处理具有陡峭的低噪声图像,当图像边缘接近于正负45,处理效果最佳。缺点是对边缘定位信息不太准确,提取的边缘线条较粗。Roberts算子模板分为水平方向和垂直方向。
在python中Roberts算子主要是通过Numpy定义模板,再调用OpenCV中的filter2D()函数实现边缘提取,该函数主要是利用内核实现对图像的卷积运算,其函数原型如下:
dst=cv.filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])
参数如下:
src 原图像 dst 目标图像,与原图像尺寸和通过数相同 ddepth 目标图像的所需深度 kernel 卷积核(或相当于相关核),单通道浮点矩阵;如果要将不同的内核应用于不同的通道,请使用拆分将图像拆分为单独的颜色平面,然后单独处理它们。 anchor 内核的锚点,指示内核中过滤点的相对位置;锚应位于内核中;默认值(-1,-1)表示锚位于内核中心。 detal 在将它们存储在dst中之前,将可选值添加到已过滤的像素中。类似于偏置。 borderType 像素外推法,参见BorderTypes
Roberts算法代码如下所示:
import cv2
import matplotlib.pyplot as plt
import numpy as np
#读取图像
image = cv2.imread('E:/python