Mad scientist Mike is building a time machine in his spare time. To finish the work, he needs a resistor with a certain resistance value.
However, all Mike has is lots of identical resistors with unit resistance R0 = 1. Elements with other resistance can be constructed from these resistors. In this problem, we will consider the following as elements:
- one resistor;
- an element and one resistor plugged in sequence;
- an element and one resistor plugged in parallel.

With the consecutive connection the resistance of the new element equals R = Re + R0. With the parallel connection the resistance of the new element equals . In this case Re equals the resistance of the element being connected.
Mike needs to assemble an element with a resistance equal to the fraction . Determine the smallest possible number of resistors he needs to make such an element.
The single input line contains two space-separated integers a and b (1 ≤ a, b ≤ 1018). It is guaranteed that the fraction is irreducible. It is guaranteed that a solution always exists.
Print a single number — the answer to the problem.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is recommended to use the cin, cout streams or the %I64d specifier.
1 1
1
3 2
3
199 200
200
In the first sample, one resistor is enough.
In the second sample one can connect the resistors in parallel, take the resulting element and connect it to a third resistor consecutively. Then, we get an element with resistance . We cannot make this element using two resistors.
诶╮(╯▽╰)╭ 这道题真是不要说起
交了9次都没过,不知道被罚时罚了多少。。。
当看到有人300+k就A掉的时候,我和我身边的两个小伙伴都惊呆了(⊙o⊙)…
最后半个小时本来想放弃的,嫌无聊又看了遍题目
原来是题目看错了啊摔! (#‵′)
题目的意思是给足够的阻值为1Ω的电阻
问至少需要多少个电阻才能组成相应阻值的电阻
但!是!! 串联只能和电阻为1Ω的串联,并联也只能和电阻为1Ω的并联啊啊啊啊啊>_<|||
于是,就很简单了嘛╮(╯▽╰)╭
对于给定的分数a/b,拆分成整数和真分数和的形式
整数部分就是串联的电阻个数
而真分数部分则取其倒数后,重复上述步骤直至真分数部分为0
原理就是,如果电阻R与单位电阻(阻值为1Ω的电阻)串联,则组合的电阻阻值为R+1
如果电阻R与单位电阻并联,则组合的电阻阻值为R/(R+1)
假设R = a/b
假设目标电阻阻值为R0,那么串联的话R0 = R+1 即 R0 = (a+b)/b;
并联的话R0 = R/(R+1) 即 R0 = b/(a+b)
由此可见,对于一个电阻,当其按以上规则串联或并联得到的组合电阻的阻值为倒数关系
对于阻值为a/b的电阻,若a>b(即阻值为假分数),将其拆分为整数部分和真分数部分
为了使使用的电阻个数最少,其整数部分必然用阻值为1Ω的电阻串联
真分数部分取倒数后再次变为假分数(若分子分母恰好整除,则结束循环)
重复上述的操作
代码如下:
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int main() {
long long a, b, cnt = 0;
cin >> a >> b;
while (a%b != 0) {
if (a >= b) { cnt += a/b; a -= a/b*b; }
else {
swap(a, b);
}
}
//cout << a << b;
cnt += a/b;
cout << cnt << endl;
return 0;
}