CodeForces 510B Fox And Two Dots

本文介绍了一种使用深度优先搜索(DFS)解决二维网格中寻找相同颜色点构成的环形路径的方法。通过方向标记避免了深度为2时的误判。
B. Fox And Two Dots
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Fox Ciel is playing a mobile puzzle game called "Two Dots". The basic levels are played on a board of size n × m cells, like this:

Each cell contains a dot that has some color. We will use different uppercase Latin characters to express different colors.

The key of this game is to find a cycle that contain dots of same color. Consider 4 blue dots on the picture forming a circle as an example. Formally, we call a sequence of dots d1, d2, ..., dk a cycle if and only if it meets the following condition:

  1. These k dots are different: if i ≠ j then di is different from dj
  2. k is at least 4. 
  3. All dots belong to the same color. 
  4. For all 1 ≤ i ≤ k - 1di and di + 1 are adjacent. Also, dk and d1 should also be adjacent. Cells x and y are called adjacent if they share an edge. 

Determine if there exists a cycle on the field.

Input

The first line contains two integers n and m (2 ≤ n, m ≤ 50): the number of rows and columns of the board.

Then n lines follow, each line contains a string consisting of m characters, expressing colors of dots in each line. Each character is an uppercase Latin letter.

Output

Output "Yes" if there exists a cycle, and "No" otherwise.

Sample test(s)
input
3 4
AAAA
ABCA
AAAA
output
Yes
input
3 4
AAAA
ABCA
AADA
output
No
input
4 4
YYYR
BYBY
BBBY
BBBY
output
Yes
input
7 6
AAAAAB
ABBBAB
ABAAAB
ABABBB
ABAAAB
ABBBAB
AAAAAB
output
Yes
input
2 13
ABCDEFGHIJKLM
NOPQRSTUVWXYZ
output
No
Note

In first sample test all 'A' form a cycle.

In second sample there is no such cycle.

The third sample is displayed on the picture above ('Y' = Yellow, 'B' = Blue, 'R' = Red).


这道题很容易理解,就是判断是否存在相同颜色的小球构成环

大致思路就是用DFS,直到找到已经标记过的点,那么就找到一个环了

但是同时还要考虑到搜索深度的问题,因为当深度为2时,根据判断条件会误判为已经找到满足题意环

训练赛的时候一直想不好该怎么处理,快结束的时候就放弃欢脱地去吃饭了~(≧▽≦)/~


饭饱茶足回来,查了下别人的做法,真的很精练啊

改成了自己的代码交了上去


#include<iostream>
#include<cstring>
using namespace std;

const int maxn = 50+5;

char G[maxn][maxn];
bool idx[maxn][maxn] = {false};

bool dfs(int i, int j, int t) {
  if (idx[i][j] == true) return true;
  idx[i][j] = true;
  if (G[i][j] == G[i-1][j] && t!=2) if (dfs(i-1,j,1)) return true;
  if (G[i][j] == G[i+1][j] && t!=1) if (dfs(i+1,j,2)) return true;
  if (G[i][j] == G[i][j-1] && t!=4) if (dfs(i,j-1,3)) return true;
  if (G[i][j] == G[i][j+1] && t!=3) if (dfs(i,j+1,4)) return true;
  return false;
}

int main() {
  int n, m;
  cin >> n >> m;
  memset(G, 0, sizeof(G));
  for (int i = 0; i < n; i++)
    cin >> G[i];
  for (int i = 0; i < n; i++)
    for (int j = 0; j < m; j++)
      if (!idx[i][j])
        if (dfs(i, j, 0)) {
          cout << "Yes" << endl;
          return 0;
        }
  cout << "No" << endl;
  return 0;
}

dfs函数还是很常见的写法,唯一值得一提的是增加了一个参量t用来记录搜索时的方向

这样就可以避免误判了,真是机智(^o^)/

虽然给定引用中未直接提及“Kuroni and Simple Strings”题目的详细信息,但通常这类题目可能与字符串处理、括号匹配等相关。一般而言,题目可能会给出一个由括号组成的字符串,要求找出能移除的最大数量的不相交的合法括号对,并输出移除这些括号对后的相关信息。 ### 解法分析 #### 栈解法 栈解法是处理括号匹配问题的经典方法。通过遍历字符串,将左括号压入栈中,遇到右括号时,若栈顶为左括号,则将栈顶元素弹出,表示这是一对匹配的括号。 ```python s = input() stack = [] pairs = [] for i, char in enumerate(s): if char == '(': stack.append(i) else: if stack: left_index = stack.pop() pairs.append((left_index + 1, i + 1)) if not pairs: print(0) else: print(1) print(len(pairs) * 2) result = [] for l, r in pairs: result.extend([l, r]) result.sort() print(" ".join(map(str, result))) ``` #### 双指针解法 双指针解法从字符串的两端向中间遍历,分别使用两个指针 `left` 和 `right`。`left` 指针从左向右寻找 `(`,`right` 指针从右向左寻找 `)`,当找到一对匹配的括号时,将它们标记为已移除,继续寻找下一对匹配的括号,直到无法再找到匹配的括号为止。 ```python s = input() n = len(s) left = 0 right = n - 1 pairs = [] while left < right: while left < right and s[left] != '(': left += 1 while left < right and s[right] != ')': right -= 1 if left < right: pairs.append((left + 1, right + 1)) left += 1 right -= 1 if not pairs: print(0) else: print(1) print(len(pairs) * 2) result = [] for l, r in pairs: result.extend([l, r]) result.sort() print(" ".join(map(str, result))) ``` ### 复杂度分析 - **栈解法**:时间复杂度为 $O(n)$,其中 $n$ 是字符串的长度。空间复杂度为 $O(n)$,主要用于栈的空间开销。 - **双指针解法**:时间复杂度为 $O(n)$,空间复杂度为 $O(n)$,主要用于存储匹配的括号对。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值