一、年龄巧合
小明和他的表弟一起去看电影,有人问他们的年龄。小明说:今年是我们的幸运年啊。我出生年份的四位数字加起来刚好是我的年龄。表弟的也是如此。已知今年是2014年,并且,小明说的年龄指的是周岁。请推断并填写出小明的出生年份。
思路:遍历。
答案:1988
#include <iostream>
using namespace std;
int main()
{
for(int i=1;i<=9;i++)
for(int j=0;j<=9;j++)
for(int k=0;k<=9;k++)
for(int l=0;l<=9;l++)
{
int t=i*1000+j*100+k*10+l;
if(t-2014==(i+j+k+l))
cout<<i<<j<<k<<l<<endl;
}
return 0;
}
二、出栈次序
X星球特别讲究秩序,所有道路都是单行线。一个甲壳虫车队,共16辆车,按照编号先后发车,夹在其它车流中,缓缓前行。路边有个死胡同,只能容一辆车通过,是临时的检查站,如图【p1.png】所示。
X星球太死板,要求每辆路过的车必须进入检查站,也可能不检查就放行,也可能仔细检查。
如果车辆进入检查站和离开的次序可以任意交错。那么,该车队再次上路后,可能的次序有多少种?
为了方便起见,假设检查站可容纳任意数量的汽车。
显然,如果车队只有1辆车,可能次序1种;2辆车可能次序2种;3辆车可能次序5种。
现在足足有16辆车啊,亲!需要你计算出可能次序的数目。
题意:求n个元素的出栈情况有多少种。
思路:
方法一:
我们把n个元素的出栈个数的记为f(n), 那么对于1,2,3, 我们很容易得出:
f(1)= 1 //即 1
f(2)= 2 //即 12、21
f(3)= 5 //即 123、132、213、321、231
然后我们来考虑f(4), 我们给4个元素编号为a,b,c,d, 那么考虑:元素a只可能出现在1号位置,2号位置,3号位置和4号位置(很容易理解,一共就4个位置,比如abcd,元素a就在1号位置)。
分析:
1) 如果元素a在1号位置,那么只可能a进栈,马上出栈,此时还剩元素b、c、d等待操作,就是子问题f(3);
2) 如果元素a在2号位置,那么一定有一个元素比a先出栈,即有f(1)种可能顺序(只能是b),还剩c、d,即f(2), 根据乘法原理,一共的顺序个数为f(1)* f(2);
3) 如果元素a在3号位置,那么一定有两个元素比1先出栈,即有f(2)种可能顺序(只能是b、c),还剩d,即f(1),
根据乘法原理,一共的顺序个数为f(2) * f(1);
4) 如果元素a在4号位置,那么一定是a先进栈,最后出栈,那么元素b、c、d的出栈顺序即是此小问题的解,即 f(3);
结合所有情况,即f(4) = f(3) +f(2) * f(1) + f(1) * f(2) + f(3);
为了规整化,我们定义f(0) = 1;于是f(4)可以重新写为:
f(4) = f(0)*f(3) + f(1)*f(2) + f(2) * f(1)+ f(3)*f(0)
然后我们推广到n,推广思路和n=4时完全一样,于是我们可以得到:
f(n) = f(0)*f(n-1) + f(1)*f(n-2) + ... +f(n-1)*f(0)
即
答案:35357670
#include<iostream>
using namespace std;
int main()
{
int a[17]={0};
a[0]=1;a[1]=1;a[2]=2;a[3]=5;
for(int i=4;i<=16;i++)
for(int j=0;j<=i-1;j++)
{
a[i]+=a[j]*a[i-1-j];
}
cout<<a[16]<<endl;
return 0;
}
三、信号匹配
从X星球接收了一个数字信号序列。
现有一个已知的样板序列。需要在信号序列中查找它首次出现的位置。这类似于串的匹配操作。
如果信号序列较长,样板序列中重复数字较多,就应当注意比较的策略了。可以仿照串的KMP算法,进行无回溯的匹配。这种匹配方法的关键是构造next数组。
next[i] 表示第i项比较失配时,样板序列向右滑动,需要重新比较的项的序号。如果为-1,表示母序列可以进入失配位置的下一个位置进行新的比较。
下面的代码实现了这个功能,请仔细阅读源码,推断划线位置缺失的代码。
// 生成next数组
int* make_next(int pa[], int pn)
{
int* next = (int*)malloc(sizeof(int)*pn);
next[0] = -1;
int j = 0;
int k = -1;
while(j < pn-1){
if(k==-1 || pa[j]==pa[k]){
j++;
k++;
next[j] = k;
}
else
k = next[k];
}
return next;
}
// da中搜索pa, da的长度为an, pa的长度为pn
int find(int da[], int an, int pa[], int pn)
{
int rst = -1;
int* next = make_next(pa, pn);
int i=0; // da中的指针
int j=0; // pa中的指针
int n = 0;
while(i<an){
n++;
if(da[i]==pa[j] || j==-1){
i++;
j++;
}
else
__________________________; //填空位置
if(j==pn) {
rst = i-pn;
break;
}
}
free(next);
return rst;
}
int main()
{
int da[] = {1,2,1,2,1,1,2,1,2,1,1,2,1,1,2,1,1,2,1,2,1,1,2,1,1,2,1,1,1,2,1,2,3};
int pa[] = {1,2,1,1,2,1,1,1,2};
int n = find(da, sizeof(da)/sizeof(int), pa, sizeof(pa)/sizeof(int));
printf("%d\n", n);
return 0;
}
本文包含三个算法挑战题目:通过年龄数字求出生年、计算特定条件下车队的出栈次序数目、以及实现改进的KMP字符串匹配算法。
946

被折叠的 条评论
为什么被折叠?



