2.2 Linear algibra

#pytorch笔记 

以后打算用优快云作为记笔记的地方,去年9月份本来就有这样的想法,后来因为种种原因搁置了。现在还存着去年的草稿。

对于张量降维度

a=torch.arange(24).reshape(2,3,4)
Out[24]: 
tensor([[[ 0,  1,  2,  3],
         [ 4,  5,  6,  7],
         [ 8,  9, 10, 11]],
        [[12, 13, 14, 15],
         [16, 17, 18, 19],
         [20, 21, 22, 23]]])

a是个三阶张量/ 三维张量

a.sum(dim=0/1/2)这里,dim(axis)=0表示,对0维度的进行相加也就是说把这一维消除/这一维度相加。

默认情况下,调用求和函数会沿所有的轴降低张量的维度,使它变为一个标量。 我们还可以指定张量沿哪一个轴来通过求和降低维度。 以矩阵为例,为了通过求和所有行的元素来降维(轴0),可以在调用函数时指定axis=0。 由于输入矩阵沿0轴降维以生成输出向量,因此输入轴0的维数在输出形状中消失。

如果想要对n阶张量进行所有元素求和,直接a.sum()即可。

当然,如果想要不断分层求和也可以:

A.sum(axis=[0, 1])  # 结果和A.sum()相同

一个与求和相关的量是平均值(mean或average)。 我们通过将总和除以元素总数来计算平均值。 在代码中,我们可以调用函数来计算任意形状张量的平均值。

A.mean(), A.su
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值